Answer:
5/6
Step-by-step explanation:
To add fraction, find LCD and then combined
hello
the question here is
![3\sqrt[]{7}(14-4\sqrt[]{56})](https://tex.z-dn.net/?f=3%5Csqrt%5B%5D%7B7%7D%2814-4%5Csqrt%5B%5D%7B56%7D%29)
step 1
multiply through the bracket by the coeffiecient
![\begin{gathered} 3\sqrt[]{7}(14-4\sqrt[]{56}) \\ (3\sqrt[]{7}\times14)-(3\sqrt[]{7}\times4\sqrt[]{56}) \\ (14\times3\sqrt[]{7})-3\sqrt[]{7}\times4\sqrt[]{4\times14} \\ (42\sqrt[]{7})-3\sqrt[]{7}\times8\sqrt[]{14} \\ (42\sqrt[]{7})-\lbrack(3\times8)\sqrt[]{7\times14} \\ 42\sqrt[]{7}-24\sqrt[]{98} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%203%5Csqrt%5B%5D%7B7%7D%2814-4%5Csqrt%5B%5D%7B56%7D%29%20%5C%5C%20%283%5Csqrt%5B%5D%7B7%7D%5Ctimes14%29-%283%5Csqrt%5B%5D%7B7%7D%5Ctimes4%5Csqrt%5B%5D%7B56%7D%29%20%5C%5C%20%2814%5Ctimes3%5Csqrt%5B%5D%7B7%7D%29-3%5Csqrt%5B%5D%7B7%7D%5Ctimes4%5Csqrt%5B%5D%7B4%5Ctimes14%7D%20%5C%5C%20%2842%5Csqrt%5B%5D%7B7%7D%29-3%5Csqrt%5B%5D%7B7%7D%5Ctimes8%5Csqrt%5B%5D%7B14%7D%20%5C%5C%20%2842%5Csqrt%5B%5D%7B7%7D%29-%5Clbrack%283%5Ctimes8%29%5Csqrt%5B%5D%7B7%5Ctimes14%7D%20%5C%5C%2042%5Csqrt%5B%5D%7B7%7D-24%5Csqrt%5B%5D%7B98%7D%20%5Cend%7Bgathered%7D)
So this is the answer 4.595714285714286 and you want you round it up to 1 d.p which is 4.6
Answer: A: 0.0031
Step-by-step explanation:
Given : In a study of wait times at an amusement park, the most popular roller coaster has a mean wait time of 17.4 minutes with a standard deviation of 5.2 minutes.
i.e.
and 
We assume that the wait times are normally distributed.
samples size : n= 30
Let x denotes the sample mean wait time.
Then, the probability that the mean wait time is greater than 20 minutes will be :
![P(x>20)=1-P(x\leq20)\\\\=1-P(\dfrac{x-\mu}{\dfrac{\sigma}{\sqrt{n}}}\leq\dfrac{20-17.4}{\dfrac{5.2}{\sqrt{30}}})\\\\=1-P(z\leq2.74)\ \ [\because\ z=\dfrac{x-\mu}{\dfrac{\sigma}{\sqrt{n}}}]\\\\=1-0.9969\ \ [\text{ By z table}]\\\\=0.0031](https://tex.z-dn.net/?f=P%28x%3E20%29%3D1-P%28x%5Cleq20%29%5C%5C%5C%5C%3D1-P%28%5Cdfrac%7Bx-%5Cmu%7D%7B%5Cdfrac%7B%5Csigma%7D%7B%5Csqrt%7Bn%7D%7D%7D%5Cleq%5Cdfrac%7B20-17.4%7D%7B%5Cdfrac%7B5.2%7D%7B%5Csqrt%7B30%7D%7D%7D%29%5C%5C%5C%5C%3D1-P%28z%5Cleq2.74%29%5C%20%5C%20%5B%5Cbecause%5C%20z%3D%5Cdfrac%7Bx-%5Cmu%7D%7B%5Cdfrac%7B%5Csigma%7D%7B%5Csqrt%7Bn%7D%7D%7D%5D%5C%5C%5C%5C%3D1-0.9969%5C%20%5C%20%5B%5Ctext%7B%20By%20z%20table%7D%5D%5C%5C%5C%5C%3D0.0031)
Hence, the probability that the mean wait time is greater than 20 minutes.= 0.0031
Thus , the correct answer is A: 0.0031 .
Create equal fractions to find the number of hours he used the health club for.
2/13=x/29.25
Then, simplify so that x is by itself.
(29.25x2)/13 = x
x= 58.5/13
x=4.5 hours