KE = ½mv² = ½(4.00 kg)(16.0 m/s)² = 512 J
C. Amount of oxygen
The others either change but don’t decrease or they increase.
Answer:
Thus, if field were sampled at same distance, the field due to short wire is greater than field due to long wire.
Explanation:
The magnetic field, B of long straight wire can be obtained by applying ampere's law

I is here current, and r's the distance from the wire to the field of measurement.
The magnetic field is obviously directly proportional to the current wire. From this expression.
As the resistance of the long cable is proportional to the cable length, the short cable becomes less resilient than the long cable, so going through the short cable (where filled with the same material) is a bigger amount of currents. If the field is measured at the same time, the field is therefore larger than the long wire because of the short wire.