<span>A colloid can be detected by using the Tyndall effect. The correct option among all the options that are given in the question is the second option. The other choices are incorrect and can be easily neglected. I hope that this is the answer that you were looking for and the answer has actually come to your desired help.</span>
Answer:
697 g
Explanation:
Ethanol (C₂H₅OH) and butanoic acid (C₃H₇COOH) react to form ethyl butanoate (C₃H₇COOC₂H₅) and water (H₂O).
C₂H₅OH + C₃H₇COOH → C₃H₇COOC₂H₅ + H₂O
The molar ratio of C₂H₅OH to C₃H₇COOC₂H₅ is 1:1. The moles of C₃H₇COOC₂H₅ produced from 6.00 moles of C₂H₅OH are:
6.00 mol C₂H₅OH × (1 mol C₃H₇COOC₂H₅/1 mol C₂H₅OH) = 6.00 mol C₃H₇COOC₂H₅
The molar mass of C₃H₇COOC₂H₅ is 116.16 g/mol. The mass corresponding to 6.00 mol is:
6.00 mol × (116.16 g/mol) = 697 g
1. <em>Describe</em>
Frequency (f) and wavelength (λ) are inversely related.
f ∝ 1/λ
As one goes up, the other goes down and vice versa.
2. <em>Infer
</em>
The frequency of infrared light is less than that of red light, so infra could mean something like less than or below or beneath.
Ultrahigh frequencies are extremely high compared with those of visible light. Ultrasound has frequencies that are far beyond what we can hear. An ultracentrifuge goes at extremely high speed, and an ultramicroscope can “see” tiny structures. Ultra could probably mean something like extremely or far beyond.
3. <em>Analyze
</em>
Energy is directly proportional to frequency (E ∝ f).
Frequency is inversely proportional to wavelength (f ∝ 1/λ).
Energy is inversely proportional to wavelength (E ∝ 1/λ).
Avogadro's number tells you that in one mol of element (sulfur) there are 6.022x10^23 atoms...
So,
1 mol : 6.022x10^23 = x mol : 1.2x10^2
x = 1.99 x 10^-22 mol
*Although this should be correct, you might want to check your question again. You probably misinterpret the question... you want 1.2x10^23 !! :) check it.
Loss of an electron is oxidation!