Answer:
The correct answer is 187.7 J/Jg.
Explanation:
The formula for finding the specific heat of fusion is,
Specific heat of fusion = Q/m
Here Q is the heat energy added, signified in kJ, and m is the mass of the object in kg.
Based on the given information, the heat energy added or Q is 869 kJ and the mass of the ice is 4.6 Kg
Now putting the values in the formula we get,
Specific heat of fusion = Q/m
Specific heat of fusion = 863 kJ / 4.6 Kg = 187.7 J/Kg
Producers (autotroph)
I’m sorry if this isn’t the answer you were looking for, if so, please be more specific and I can try to help again, thank you.
If Ka for HBrO is 2. 8×10^−9 at 25°C, then the value of Kb for BrO− at 25°C is 3.5× 10^(-6).
<h3>
What is base dissociation constant?
</h3>
The base dissociation constant (Kb) is defined as the measurement of the ions which base can dissociate or dissolve in the aqueous solution. The greater the value of base dissociation constant greater will be its basicity an strength.
The dissociation reaction of hydrogen cyanide can be given as
HCN --- (H+) + (CN-)
Given,
The value of Ka for HCN is 2.8× 10^(-9)
The correlation between base dissociation constant and acid dissociation constant is
Kw = Ka × Kb
Kw = 10^(-14)
Substituting values of Ka and Kw,
Kb = 10^(-14) /{2.8×10^(-9) }
= 3.5× 10^(-6)
Thus, we find that if Ka for HBrO is 2. 8×10^−9 at 25°C, then the value of Kb for BrO− at 25°C is 3.5× 10^(-6).
DISCLAIMER: The above question have mistake. The correct question is given as
Question:
Given that Ka for HBrO is 2. 8×10^−9 at 25°C. What is the value of Kb for BrO− at 25°C?
learn more about base dissociation constant:
brainly.com/question/9234362
#SPJ4
Answer:
i am so sorry. i do not have a answer but i am trying to find questioms i can answer
Answer:
Explanation:according to question:
. Nacl (aq) + AgNO3 (aq) --> AgCl
(s) + NaNO3 (aq).balanced.