This question is basically asking us to convert the volume from mL to kL.
We can do this by setting up a multiplication problem and cancelling out units:

So now we know that
the Bay water will occupy 1.25x10^-4 kL.
Answer:
Thomson's experiments with cathode ray tubes showed that all atoms contain tiny negatively charged subatomic particles or electrons. Thomson's plum pudding model of the atom had negatively-charged electrons embedded within a positively-charged "soup.
Answer: Ethyl Ethanoate can be used as a developing solvent. It’s safer.
Explanation:Di ethyl ether should be carefully used because it’s highly flammable and intoxicating when inhaled and can cause explosions because of its high reactivity to air and light.
Answer: CoBr3 < K2SO4 < NH4 Cl
Justification:
1) The depression of the freezing point of a solution is a colligative property, which means that it depends on the number of particles of solute dissolved.
2) The formula for the depression of freezing point is:
ΔTf = i * Kf * m
Where i is the van't Hoof factor which accounts for the dissociation of the solute.
Kf is the freezing molal constant and only depends on the solvent
m is the molality (molal concentration).
3) Since, you are assuming equal concentrations and complete dissociation of the given solutes, the solute with more ions in the molecular formula will result in the solution with higher depression of the freezing point (lower freezing point).
4) These are the dissociations of the given solutes:
a) NH4 Cl (s) --> NH4(+)(aq) + Cl(-) (aq) => 1 mol --> 2 moles
b) Co Br3 (s) --> Co(3+) (aq) + 3Br(-)(aq) => 1 mol --> 4 moles
c) K2SO4 (s) --> 2K(+) (aq) + SO4 (2-) (aq) => 1 mol --> 3 moles
5) So, the rank of solutions by their freezing points is:
CoBr3 < K2SO4 < NH4 Cl