Inclined planes reduce the amount of effort needed to move an object, but increases the length of the ramp.
<u>Explanation:</u>
Mechanical advantage is the measure of amount of effort needed to move an object. The mechanical advantage can be calculated as the ratio of length of ramp to the height of ramp for an inclined plane.
As it is known that an object can be easily moved on an inclined plane than on a vertical plane, this is because, the inclined plane provides greater output force. But in that case, the effort required will be reduced with the cost of increasing the distance of the movement of object.
In other terms , the ramp's length of inclined planes has to get increased in order to reduce the amount of effort needed to move an object. This is because as the mechanical advantage has length of the ramp in the numerator, with the increase in numerator value or length value the mechanical advantage will also increase.
Answer:
Zinc nitrate gives white ppt. which dissolves in excess ammonium hydroxide and produce a colorless solution whereas lead nitrate gives a chalky white ppt. of lead hydroxide which doesnot dissolve.
Explanation:
Hope this helps :)
Answer:
- <em>Oxidation half-reaction</em>:
Fe²⁺(aq) → Fe³⁺(aq) + 1e⁻
- <em>Reduction half-reaction</em>:
Ce⁴⁺(aq) + 1e⁻ → Ce³⁺(aq)
Explanation:
The reaction that takes place is:
- Fe²⁺(aq) + Ce⁴⁺(aq) → Fe³⁺(aq) + Ce³⁺(aq)
The <em>oxidation half-reaction</em> is:
- Fe²⁺(aq) → Fe³⁺(aq) + 1e⁻
It is an oxidation because the oxidation state of Fe increases from 2+ to 3+.
The <em>reduction half-reaction</em> is:
- Ce⁴⁺(aq) + 1e⁻ → Ce³⁺(aq)
It is a reduction because the oxidation state of Ce decreases from 4+ to 3+.
0.040 mol / dm³. (2 sig. fig.)
<h3>Explanation</h3>
in this question acts as a weak base. As seen in the equation in the question,
produces
rather than
when it dissolves in water. The concentration of
will likely be more useful than that of
for the calculations here.
Finding the value of
from pH:
Assume that
,
.
.
Solve for
:
![\dfrac{[\text{OH}^{-}]_\text{equilibrium}\cdot[(\text{CH}_3)_3\text{NH}^{+}]_\text{equilibrium}}{[(\text{CH}_3)_3\text{N}]_\text{equilibrium}} = \text{K}_b = 1.58\times 10^{-3}](https://tex.z-dn.net/?f=%5Cdfrac%7B%5B%5Ctext%7BOH%7D%5E%7B-%7D%5D_%5Ctext%7Bequilibrium%7D%5Ccdot%5B%28%5Ctext%7BCH%7D_3%29_3%5Ctext%7BNH%7D%5E%7B%2B%7D%5D_%5Ctext%7Bequilibrium%7D%7D%7B%5B%28%5Ctext%7BCH%7D_3%29_3%5Ctext%7BN%7D%5D_%5Ctext%7Bequilibrium%7D%7D%20%3D%20%5Ctext%7BK%7D_b%20%3D%201.58%5Ctimes%2010%5E%7B-3%7D)
Note that water isn't part of this expression.
The value of Kb is quite small. The change in
is nearly negligible once it dissolves. In other words,
.
Also, for each mole of
produced, one mole of
was also produced. The solution started with a small amount of either species. As a result,
.
,
,
.
Option C but i am not sure