Constant variable/control variable
Answer : The concentration of a solution with an absorbance of 0.460 is, 0.177 M
Explanation :
Using Beer-Lambert's law :

where,
A = absorbance of solution
C = concentration of solution
l = path length
= molar absorptivity coefficient
From this we conclude that absorbance of solution is directly proportional to the concentration of solution at constant path length.
Thus, the relation between absorbance and concentration of solution will be:

Given:
= 0.350
= 0.460
= 0.135 M
= ?
Now put all the given values in the above formula, we get:


Therefore, the concentration of a solution with an absorbance of 0.460 is, 0.177 M
<h2>The required option d) "specific heat" is correct.</h2>
Explanation:
- To raise the temperature of any substance or material of certain mass to respective temperature it requires some amount of heat.
- Specific heat is the amount of heat necessary to raise the temperature of the substance of 1 gram to 1 Kelvin.
- It is the amount of heat which is required to raise the temperature per unit mass to per unit temperature.
- Thus, the required "option d) specific heat" is correct.
Answer:
a. 58.5 g/mol
b. 0.1 mol
Explanation:
a.
The molar mass of Na is 23.0 g/mol. The molar mass of Cl is 35.5 g/mol. The molar mass of NaCl is:
M(Na) + M(Cl) = 23.0 g/mol + 35.5 g/mol = 58.5 g/mol
b. A healthy adult should eat no more than 6 g of salt in one day. The moles corresponding to 6 g of NaCl are:
6 g × (1 mol/58.5 g) = 0.1 mol
Answer:
A.
Explanation:
The <u>tertiary structure </u>of proteins is related to the interactions between the amino acids of the <u>primary structure</u>. Thus, these interactions give it a specific three-dimensional configuration which is very sensitive to <u>functionality</u>.
For example, <u>allosteric inhibitions</u> are related to this concept. When the <u>inhibitor</u> changes the tertiary structure of the protein it loses all <u>activity</u> and for the catalysis of the reaction.
Thus, the primary structure (which is related to the specific <u>sequence of amino acids</u>) will determine the tertiary structure since the chain folds will be a consequence of<u> intra-amino acid interactions</u>.