Answer:
mole fraction of NaCl = 0.03145.
mole fraction of water = 0.9686.
Explanation:
- Mole fraction is an expression of the concentration of a solution or mixture.
- It is equal to the moles of one component divided by the total moles in the solution or mixture.
- The summation of mole fraction of all mixture components = 1.
mole fraction of NaCl = (no. of moles of NaCl) / (total no. of moles).
<em>no. of moles of NaCl = mass/molar mass </em>= (6.87 g)/(58.44 g/mol) = 0.1176 mol.
<em>no. of moles of water = mass/molar mass</em> = (65.2 g)/(18.0 g/mol) = <em>3.622 mol.</em>
<em></em>
∴ mole fraction of NaCl = (no. of moles of NaCl) / (total no. of moles) = (0.1176 mol)/(0.1176 mol + 3.622 mol) = 0.03145.
<em>∵ mole fraction of NaCl + mole fraction of water = 1.0.</em>
∴ mole fraction of water = 1.0 - mole fraction of NaCl = 1.0 - 0.03145 = 0.9686.
Is there any answers to choose from?
<span />
Barium Chloride
Aluminum Iodide
Lithium Phosphide
Sodium Nitride
Potassium Sulfide
Aluminum Oxide
Sodium Oxide
Rubidium Bromide
Calcium Phosphide
hope this helps for the names
Answer:
C. It is reactive because it must gain two electrons to have a full outermost energy level.
Step-by-step explanation:
The electron configuration of this element ends in 2s²2p⁴.
A filled energy level would end in 2s²2p⁶.
The element will be reactive, because it must gain electrons to have a full energy level, and it needs two more electrons to do this.
Answer:
According to libretexts the answer would be B. decreases.
Explanation:
If the hydrogen concentration increases, the pH decreases, causing the solution to become more acidic. This happens when an acid is introduced. ... If the hydrogen concentration decreases, the pH increases, resulting in a solution that is less acidic and more basic