It would be an physical change ; if you melt butter the butter goes from a solid to a liquid so therefore the physical state is changed.
Balance each one by adding electrons to make the charges on both sides the same:
Sn--> Sn2+ + 2 e-
Ag+ + 1 e- --> Ag
Now, you have to have the same number of electrons in the two half-reactions, so multiply the second one by 2 to get:
2 Ag+ + 2 e- --> 2 Ag
Now, just add the two half reactions together, cancelling anything that's the same on both sides:
2 Ag+ + Sn --> Sn2+ + 2 Ag
And you're done.
<span>
Correct Answer:
Option 3 i.e. 30 g of KI dissolved in 100 g of water.
Reason:
Depression in freezing point is a
colligative property and it is directly proportional to molality of solution.
Molality of solution is mathematically expressed as,
Molality = </span>

<span>
In case of
option 1 and 2, molality of solution is
0.602 m. For
option 3, molality of solution is
1.807 m, while in case of
option 4, molality of solution is
1.205 m.
<u><em>Thus, second solution (option 2) has highest concentration (in terms of molality). Hence, it will have lowest freezing point</em></u></span>
Answer:
i think that the wet cloth will keep the coolness inside the water instead of evaporating and getting warm
Explanation:
Answer:
C) Highly reactive
Explanation:
An atom with one or two valence electrons more than a closed shell is highly reactive, because the extra valence electrons are easily removed to form a positive ion