I think the answer is C, but i'm not completely sure.
For the compound B the following statement is correct-
B. It is an ether because it is unable to form a hydrogen bond, so it is less soluble in water.
The solubility of alcohol in water depends upon the capability of formation of hydrogen bond in the solute. Now in alcohol the -OH group is polar in nature which enhance the possibility of hydrogen bond formation and it is more soluble in water.
On the other hand although there presence a -O- functional group in ether. It is less soluble in water due to non polarity of the functional group.
From the given data it is seen that compound A is more soluble in water than compound B. Thus it may be predicted that compound A is alcohol and B is ether.
Henceforth, for the compound B the following statement is correct-
B. It is an ether because it is unable to form a hydrogen bond, so it is less soluble in water.
The reason of incorrect options:
A. compound B cannot be an alcohol as it is less soluble in water.
C. In ether the functional group is -O-, thus electronegative atom (O) is present.
D. As both the compound (alcohol and ether) has equal molecular mass thus the organic chain will be same in alcohol and the hydrogen bond interaction will be more prominent than the dispersion force between the -OH group.
Answer:
Rate = k . [B]² . [C]
Explanation:
The dependence of the reaction rate on the concentration of the reactants is given by the reaction order of each one, as shown in the rate equation.
![Rate=k.[A]^{x} .[B]^{y} .[C]^{z}](https://tex.z-dn.net/?f=Rate%3Dk.%5BA%5D%5E%7Bx%7D%20.%5BB%5D%5E%7By%7D%20.%5BC%5D%5E%7Bz%7D)
where,
k is the rate constant
x, y, z are the reaction orders.
- <em>The rate of reaction is not affected by changing the concentration of species A.</em> This means that the reaction order for A is x = 0 since when its concentration changes, the rate stays the same.
- <em>Leaving all other factors identical, doubling the concentration of species B increases the rate by a factor of 4.</em> This means that the reaction order for B is y = 2, so when the concentration is doubled, the new rate is 2² = 4 times the initial rate.
- The rate of the reaction is linearly dependent on the concentration of C. This means that the reaction order for C is z = 1, that is, a linear dependence.
All in all, the rate equation is:
Rate = k . [B]² . [C]
Period. Groups/families are the vertical columns on the periodic table.