Answer:
When the velocity doesn't change its direction
Explanation:
Since velocity vector has 2 components: direction and magnitude, and speed is the velocity's magnitude. So if the velocity doesn't change its direction, we essentially use its magnitude, aka speed, to calculate the rate of change for acceleration.
Answer:
The volume of the block is equal to the volume of water displaced by the block.
Explanation:
Volume refers to the amount of space occupied by a given object (in this case the block). When an object such as the block is immersed in water, it displaces its own volume of water. This volume of water displaced is equal to the volume of the block. Hence we can write;
Final Volume of water - Initial Volume of water= Water Displaced = Volume of the block
Recall that the density of a body is given by;
Density= mass/volume
If we obtain the volume of the block by measuring the volume of water displaced by the block, then we weigh the block using a weighing balance, we can obtain the density of the block easily from the relationship shown above.
Answer:
a) 3.43 m/s
Explanation:
Due to the law of conservation of momentum, the total momentum of the bullet - rifle system must be conserved.
The total momentum before the bullet is shot is zero, because they are both at rest, so:

Instead the total momentum of the system after the shot is:

where:
m = 0.006 kg is the mass of the bullet
M = 1.4 kg is the mass of the rifle
v = 800 m/s is the velocity of the bullet
V is the recoil velocity of the rifle
The total momentum is conserved, therefore we can write:

Which means:

Solving for V, we can find the recoil velocity of the rifle:

where the negative sign indicates that the velocity is opposite to direction of the bullet: so the recoil speed is
a) 3.43 m/s
Answer:
60
first choice = 1/5
second choice = 1/4
third choice = 1/3
5*4*3 = 60 the number of choices
The mass of ice melted as a result of friction between the ice and the horizontal surface is 2.78g
<u>Explanation:</u>
Given,
Temperature, T = 0°C
Initial mass, Mi = 62kg
Speed, s = 5.48m/s
Distance, x = 26.8m
Friction is present.
Mass of ice melted = ?
We know,
The amount of energy required for the melting of ice is exactly equal to the initial kinetic energy of the block of ice
and

Therefore, 
KE = 930.94 Joules
Ice melting lateral heat is 334 kJ/kg = 334000 J/kg.
Therefore, the melted mass of the ice = 930.94 / 334000 = 0.00278 kg = 2.78 g.
Thus, The mass of ice melted as a result of friction between the ice and the horizontal surface is 2.78g