Answer:
4 m/s
Explanation:
m1 = m2 = m
u1 = 20 m/s, u2 = - 12 m/s
Let the speed of composite body is v after the collision.
Use the conservation of momentum
Momentum before collision = momentum after collision
m1 x u1 + m2 x u2 = (m1 + m2) x v
m x 20 - m x 12 = (m + m) x v
20 - 12 = 2 v
8 = 2 v
v = 4 m/s
Thus, the speed of teh composite body is 4 m/s.
The answer for the following answer is answered below.
- <u><em>Therefore the time period of the wave is 0.01 seconds.</em></u>
- <u><em>Therefore the option for the answer is "B".</em></u>
Explanation:
Frequency (f):
The number of waves that pass a fixed place in a given amount of time.
The SI unit of frequency is Hertz (Hz)
Time period (T):
The time taken for one complete cycle of vibration to pass a given point.
The SI unit of time period is seconds (s)
Given:
frequency (f) = 100 Hz
wavelength (λ) = 2.0 m
To calculate:
Time period (T)
We know;
According to the formula;
<u>f =</u>
<u></u>
Where,
f represents the frequency
T represents the time period
from the formula;
T = 
T = 
T = 0.01 seconds
<u><em>Therefore the time period of the wave is 0.01 seconds.</em></u>
1.commensalism
2. pred-prey
3. parasite-host
4.commensalism
Answer:
The distance in kilometers is 4012 ×
km.
Explanation:
We know that the conversion of 1 millimeters is equal to
meter. And then the conversion of 1 meter is equal to
km. Then the conversion of 1 millimeter to km will be
1 mm =
m
1 m =
km
So, 1 mm =
×
km =
km.
As here the the distance is 4012 mm, then the distance in km will be
4012 mm = 4012 ×
km.
So the distance is 4012 ×
km.
Answer:

Explanation:
From the question we are told that:
Potential difference 
New Capacitor 
Generally the equation for Capacitor capacitance is mathematically given by

Generally the equation for New p.d' is mathematically given by



