Answer:
Work done, W = 2675.4 J
Given:
mass, m = 70.0 kg
height, H = 3.90 m
Solution:
According to the question, as the person jumps the stairs up, there is an increase in the potential energy of the person which is provided by the work done in climbing the stairs and is given by:
Work done, W = mgH
where
g = acceleration due to gravity = ![9.8 m/s^{2}[tex][tex]W = 70.0\times 9.8\times 3.90 = 2675.4 J](https://tex.z-dn.net/?f=9.8%20m%2Fs%5E%7B2%7D%5Btex%5D%3C%2Fp%3E%3Cp%3E%5Btex%5DW%20%3D%2070.0%5Ctimes%209.8%5Ctimes%203.90%20%3D%202675.4%20J)
Answer:
it's B. circuit a and b are series circuit while c is parallel
The amount of force an object has will change the velocity
Answer:
k = 26.25 N/m
Explanation:
given,
mass of the block= 0.450
distance of the block = + 0.240
acceleration = a_x = -14.0 m/s²
velocity = v_x = + 4 m/s
spring force constant (k) = ?
we know,
x = A cos (ωt - ∅).....(1)
v = - ω A cos (ωt - ∅)....(2)
a = ω²A cos (ωt - ∅).........(3)

now from equation (3)



k = 26.25 N/m
hence, spring force constant is equal to k = 26.25 N/m
Answer:
71.4583 Hz
67.9064 N
Explanation:
L = Length of tube = 1.2 m
l = Length of wire = 0.35 m
m = Mass of wire = 9.5 g
v = Speed of sound in air = 343 m/s
The fundamental frequency of the tube (closed at one end) is given by

The fundamental frequency of the wire and tube is equal so he fundamental frequency of the wire is 71.4583 Hz
The linear density of the wire is

The fundamental frequency of the wire is given by

The tension in the wire is 67.9064 N