Answer:
Wavelenght is 7,79x10⁻⁵ m
Explanation:
The equation that connects wavelentgh (λ) and frequency (ν) is:
λ=c/ν
Where c is speed of light (3x10⁸ m/sec) and λ is expressed in lenght´s units and ν is expressed in "time⁻¹ " units (for example, sec⁻¹)
According to the details, if we just replace the given value of frequency, we just obtaing wavelenght data:
λ= (3x10⁸ m/sec)/(3,85x10¹² sec⁻¹) = 7,79x10⁻⁵ m
<h3>
Answer:</h3>
Chlorine gas (Cl₂)
<h3>
Explanation:</h3>
- According to the Graham's law of diffusion, the diffusion rate of a gas is inversely proportional to the square root of its density or molar mass.
- Therefore, a lighter gas will diffuse faster at a given temperature compared to a heavy gas.
- Consequently, the heavier a gas is then the denser it is and the slower it diffuses at a given temperature and vice versa.
In this case we are given gases, CI₂
, H₂,He and Ne.
- We are required to identify the gas that will diffuse at the slowest rate.
- In other words we are required to determine the heaviest gas.
Looking at the molar mass of the gases given;
Cl₂- 70.91 g/mol
H₂- 2.02 g/mol
He - 4.00 g/mol
Ne- 20.18 g/mol
Therefore, chlorine gas is the heaviest and thus will diffuse at the slowest rate among the choices given.
Answer:
- <em>The average mass of calcium in each sample is: </em><u>0.978 g</u>
<em />
- <em>The absolute uncertainty is: </em><u>0.008 g</u>
Explanation:
The <em>absolute uncertainty </em>of the total samples indicated in the statement is ± 0.1 g.
When you multiply or divide quantities with uncertainties, you calculate the final uncertanty by adding the <em>relative uncertainties</em> together.
The relative uncertainty is the absolute uncertainty divided by the quantity:
- Relative uncertainty = 0.1g / 12.2 g = 0.008
The average mass of calcium is calculated using proportions, along with the molar masses:
- Molar mass of calcium: 40.078 g/ mol (from a periodic table)
- Molar mass of calcite: 100.085 g/mol (given)
Proportion:
- 40.078 g of calcium / 100.085 g of calcite = x / 12.2 g of calcite
- x = 12.2 × 40.078 / 100.085 g = 4.89 g calcium
So the total mass of calcium in the five samples is 4.89 g, and the average mass in each sample is:
- Average mass = total mass of five samples / number of samples
- Average mass = 4.89 g / 5 = <u>0.978 g of calcium</u>
So, the first answer is that the average mass of calcium in each sample is 0.978 g ( keep 3 signficant figures, such as the quntitiy 12.2 shows, as you have only used multiplication and division).
The absolute uncertainty of each sample is the relative uncertainty multiplied by the average mass of calcium of the five samples, rounded to one decimal:
- Absolute uncertainty = 0.978 g × 0.008 ≈ 0.008 g
The answer to the secon question is that the absolute uncertaingy of calcium in each sample is 0.008 g.
Answer:
Normally, it explains that matter cannot be created or destroyed. It demonstrates different chemical reactions that help show the different transformations of the matter but will never destroy it or create it.
Answer:
Zinc
Zinc blende
(ZnS)
-----------------
Lead
Galena
(PbS)
-----------------
Mercury
Cinnabar
(HgS)
----------------
Copper
Copper glance
(Cu2S)
-------------------
Explanation:
Had to learn this for a test
Also, I plead the 5th