Answer:
-14
Step-by-step explanation:
8x-y²-3
8(-1/4) - (3)² - 3
-2 - (9) - 3
= -14
First we use sin(a+b)= sinacosb+sinbcosa
and cos(a+b)=cosa cosb -sinasinb
tan(x+pi/2)= sin(x+pi/2) / cos(x+pi/2)
and sin(x+pi/2) = sinxcospi/2 + sinpi/2cosx =cosx,
<span>cos(x+pi/2) = cosxcospi/2- sinxsinpi/2= - sinx,
</span> because <span>cospi/2 =0, </span>and <span>sinpi/2=1
</span><span>=tan(x+pi/2)= sin(x+pi/2) / cos(x+pi/2)= cosx / -sinx = -1/tanx = -cotx
</span>from where <span>tan(x+pi/2)=-cotx</span>
2cos^2 x = 1 + cos 2x
cos^2 x = 1/2(1 + cos 2x)
f(x) = 6cos^2 x - 4 sin 2x = 6(1/2(1 + cos 2x) - 4 sin 2x = 3 + 3cos 2x - 4sin 2x
Answer:
![(2,6,6) \not \in \text{Span}(u,v)](https://tex.z-dn.net/?f=%282%2C6%2C6%29%20%5Cnot%20%5Cin%20%5Ctext%7BSpan%7D%28u%2Cv%29)
![(-9,-2,5)\in \text{Span}(u,v)](https://tex.z-dn.net/?f=%28-9%2C-2%2C5%29%5Cin%20%5Ctext%7BSpan%7D%28u%2Cv%29%20)
Step-by-step explanation:
Let
. We have that
if and only if we can find scalars
such that
. This can be translated to the following equations:
1. ![-\alpha + 3 \beta = b_1](https://tex.z-dn.net/?f=-%5Calpha%20%2B%203%20%5Cbeta%20%3D%20b_1%20)
2.![2\alpha+4 \beta = b_2](https://tex.z-dn.net/?f=%202%5Calpha%2B4%20%5Cbeta%20%3D%20b_2)
3. ![3 \alpha +2 \beta = b_3](https://tex.z-dn.net/?f=%203%20%5Calpha%20%2B2%20%5Cbeta%20%3D%20b_3)
Which is a system of 3 equations a 2 variables. We can take two of this equations, find the solutions for
and check if the third equationd is fulfilled.
Case (2,6,6)
Using equations 1 and 2 we get
![-\alpha + 3 \beta = 2](https://tex.z-dn.net/?f=-%5Calpha%20%2B%203%20%5Cbeta%20%3D%202%20)
![2\alpha+4 \beta = 6](https://tex.z-dn.net/?f=%202%5Calpha%2B4%20%5Cbeta%20%3D%206)
whose unique solutions are
, but note that for this values, the third equation doesn't hold (3+2 = 5
6). So this vector is not in the generated space of u and v.
Case (-9,-2,5)
Using equations 1 and 2 we get
![-\alpha + 3 \beta = -9](https://tex.z-dn.net/?f=-%5Calpha%20%2B%203%20%5Cbeta%20%3D%20-9%20)
![2\alpha+4 \beta = -2](https://tex.z-dn.net/?f=%202%5Calpha%2B4%20%5Cbeta%20%3D%20-2)
whose unique solutions are
. Note that in this case, the third equation holds, since 3(3)+2(-2)=5. So this vector is in the generated space of u and v.
Answer:
0.4970
Step-by-step explanation:
I might be wrong