Answer:
2.05*10⁻⁵ moles of CF₂ can dissolve in 100 g of water.
12.82 moles of CaF₂ will dissolve in exactly 1.00 L of solution
Explanation:
First, by definition of solubility, in 100 g of water there are 0.0016 g of CaF₂. So, to know how many moles are 0.0016 g, you must know the molar mass of the compound. For that you know:
- Ca: 40 g/mole
- F: 19 g/mole
So the molar mass of CaF₂ is:
CaF₂= 40 g/mole + 2*19 g/mole= 78 g/mole
Now you can apply the following rule of three: if there are 78 grams of CaF₂ in 1 mole, in 0.0016 grams of the compound how many moles are there?

moles=2.05*10⁻⁵
<u><em>2.05*10⁻⁵ moles of CF₂ can dissolve in 100 g of water.</em></u>
Now, to answer the following question, you can apply the following rule of three: if by definition of density in 1 mL there is 1 g of CaF₂, in 1000 mL (where 1L = 1000mL) how much mass of the compound is there?

mass of CaF₂= 1000 g
Now you can apply the following rule of three: if there are 78 grams of CaF₂ in 1 mole, in 1000 grams of the compound how many moles are there?

moles=12.82
<u><em>12.82 moles of CaF₂ will dissolve in exactly 1.00 L of solution</em></u>
I didn't know if you meant to the power of 14 but if you did here your answer:
3.64 x 10^-19
(you just multiply the frequency by Planck's constant= 6.63 × 10^–34)
Answer:
cellular respiration
Explanation:
All exergonic processes produced in the cell, through which substances oxidize and chemical energy is released, are grouped under the name of cellular respiration, but to break down an organic molecule the cells employ, mainly dehydrogenations that can be carried carried out in the presence or absence of atmospheric O2 oxygen. There are therefore two types of breathing: aerobic respiration and anaerobic respiration. The latter also called fermentation.
Aerobic respiration (oxidative phosphorylation)
- Use molecular O2.
- It degrades glucose to CO2 and H2O
- Exergonic
- Recovers about 50% of chemical energy
- Present in most organisms.
- It uses enzymes located in the mitochondria.
Answer:
NaHCO3 sodium bicarbonate is baking soda; added to the acetic acid, it forms sodium acetate (aqueous), CO2 gas & water. Remove the water & solid sodium acetate remains.
Explanation:
Answer:
I think copper
Explanation:
Material IACS % Conductivity
Silver 105
Copper 100
Gold 70
Aluminum 61
Nickel 22
Zinc 27
Brass 28
Iron 17
Tin 15
Phosphor Bronze 15
Lead 7
Nickel Aluminum Bronze 7
Steel 3 to 15
the table might help- your indian brother