Answer:
The ground state configuration is the lowest energy, most stable arrangement. An excited state configuration is a higher energy arrangement (it requires energy input to create an excited state). Valence electrons are the electrons utilised for bonding.
or the
FIGURE 5.9 The arrow shows a second way of remembering the order in which sublevels fill. Table 5.2 shows the electron configurations of the elements with atomic numbers 1 through 18.
Element Atomic number Electron configuration
sulfur 16 1s22s22p63s23p4
chlorine 17 1s22s22p63s23p5
argon 18 1s22s22p63s23p6
or the
Two electrons
Two electrons fill the 1s orbital, and the third electron then fills the 2s orbital. Its electron configuration is 1s22s1.
Explanation:
<em>Choose </em><em>your </em><em>answer </em>
<em>brainlilest </em><em>me</em>
<em><u>CARRY </u></em><em><u>ON </u></em><em><u>LEARNING</u></em>
Answer:
D
Explanation:
Since [pKa = - log Ka]....hence..,the larger the Ka value,the stronger the acid is..so this means that the pKa is vice versa
Saying that the smaller the pKa value..the stronger the acid is.
Ideal gas law:
PV=nRT ⇒ V=nRT / P
P=pressure=1 atm
V=volume
n=number moles=2.10 moles
R=0,082 Atm l/ºK mol
T=temperature=273 K
V=(2.10 moles*0.082 (atm l)/º(K mol)*237ºK) / 1 atm=47.01 litres
47.1 L
<h2>Answer : Option D) Solutions of salt and water conduct electricity.
</h2><h3>Explanation :</h3>
The best description of salt is that when they are dissolved in water they dissociate into ions and become electrolytic in nature. This is observed that these solutions of salt will conduct electricity. Dissociation of ions helps the solution to conduct electricity. Usually salts dissociate into respective cations and anions of the salt compound. Most of the salts can be obtained as a product from neutralization reactions.