Answer:
2.81 × 10⁶ mm³
2.81 × 10⁻³ m³
Explanation:
Step 1: Given data
Length (l): 250 mm
Width (w): 225 mm
Thickness (t): 50 mm
Step 2: Calculate the volume of the textbook
The book is a cuboid so we can find its volume (V) using the following expression.
V = l × w × t = 250 mm × 225 mm × 50 mm = 2.81 × 10⁶ mm³
Step 3: Convert the volume to cubic meters
We will use the relationship 1 m³ = 10⁹ mm³.
2.81 × 10⁶ mm³ × 1 m³ / 10⁹ mm³ = 2.81 × 10⁻³ m³
Answer:
Yes, this is true. The reason is that the flower transpires and sucks the water in and distributes it as much as it can. You can also flip it upside down and hang it with petals down , allowing the liquid to enter the flower and then retaining color for longer periods of time and having more color.
Explanation:
Answer:
1) Increasing temperature
2) Stirring
3) Increasing surface area of salt by grinding it
Answer:
V₂ = 1.92 L
Explanation:
Given data:
Initial volume = 0.500 L
Initial pressure =2911 mmHg (2911/760 = 3.83 atm)
Initial temperature = 0 °C (0 +273 = 273 K)
Final temperature = 273 K
Final volume = ?
Final pressure = 1 atm
Solution:
Formula:
P₁V₁/T₁ = P₂V₂/T₂
P₁ = Initial pressure
V₁ = Initial volume
T₁ = Initial temperature
P₂ = Final pressure
V₂ = Final volume
T₂ = Final temperature
by putting values,
V₂ = P₁V₁ T₂/ T₁ P₂
V₂ = 3.83 atm × 0.500 L × 273 K / 273 K × 1 atm
V₂ = 522.795 atm .L. K / 273 K.atm
V₂ = 1.92 L
I think this is the answer