This is a incomplete question.The complete question is:
A chemist adds 180.0 ml of a 1.77 mol/L of sodium thiosulfate solution to a reaction flask. Calculate the mass in grams of sodium thiosulfate the chemist has added to the flask. Be sure your answer has the correct number of significant digits.
Answer: 50.4 g
Explanation:
To calculate the number of moles for given molarity, we use the equation:
.....(1)
Molarity of sodium thiosulfate solution = 1.77 M
Volume of sodium thiosulfate solution = 180.0 mL = 0.1800 L
Putting values in equation 1, we get:

Mass of sodium thiosulfate =
Thus 50.4 g of sodium thiosulfate the chemist has added to the flask.
In my opinion, the answer is the second option.
Anions are mostly on the right side of the periodic table. They want to gain electrons so the can get closer to noble gas configurations. Ex. Cl-, Br- , O2.
Answer:
32 mL
Explanation:
<em>A chemist must prepare 500.0mL of hydrobromic acid solution with a pH of 0.50 at 25°C. He will do this in three steps: Fill a 500.0mL volumetric flask about halfway with distilled water. Measure out a small volume of concentrated (5.0M) stock hydrobromic acid solution and add it to the flask. Fill the flask to the mark with distilled water. Calculate the volume of concentrated hydrobromic acid that the chemist must measure out in the second step. Round your answer to 2 significant digits.</em>
<em />
Step 1: Calculate [H⁺] of the dilute solution
pH = -log [H⁺]
[H⁺] = antilog -pH = antilog -0.50 = 0.32 M
Step 2: Calculate [HBr] of the dilute solution
HBr is a strong acid that dissociates according to the following equation.
HBr ⇒ H⁺ + Br⁻
The molar ratio of HBr to H⁺ is 1:1. The concentration of HBr is 1/1 × 0.32 M = 0.32 M.
Step 3: Calculate the volume of the concentrated HBr solution
We will use the dilution rule.
C₁ × V₁ = C₂ × V₂
V₁ = C₂ × V₂ / C₁
V₁ = 0.32 M × 500.0 mL / 5.0 M
V₁ = 32 mL