Answer:
Diphosphorus pentoxide
Carbon dichloride
BCl3
N2H4
Explanation:
These are all covalent compounds. To name covalent compounds, you add prefixes to the beginning of their names depending on what the subscript is of each element. The prefixes are:
1: Mono
2: Di
3: Tri
4: Tetra
5: Penta
6: Hexa
7: Hepta
8: Octa
9: Nona
10: Deca
For example, since the first one is Phopsphorus with a 2 next to it, you add the prefix Di to it.
If the first element in the compound only has one, meaning no number next to it, you do not say mono. This is why we just say "Carbon" for the second one instead of "Monocarbon."
Finally, you always have to end the second element in the compound with "ide." So, "chlorine" becomes "chloride," "oxygen" becomes "oxide," and so on.
Answer:
The Kinetic energy decreases
Explanation:
because the speed of the molecules slows down.
Answer:
glycerol-3-phosphate, ADP, H⁺
Explanation:
The reaction of converting glycerol to glycerol-3-phosphate which makes is unfavorable and is coupled with the second reaction which involves conversion of ATP to ADP which is high energetically favorable.
Reaction 1: Glycerol + HPO₄²⁻ ⇒ Glycerol-3-phosphate + water
Reaction 2: ATP + H₂O ⇒ ADP + HPO₄²⁻ + H⁺
The coupled reaction of both the reactions become favorable. Thus, the overall coupled reaction is:
<u>Glycerol + ATP ⇒ Glycerol-3-phosphate + ADP + H⁺</u>
The net products are = glycerol-3-phosphate, ADP, H⁺
Answer:
0.3267 M
Explanation:
To solve this problem, first we calculate how many moles of Mn(ClO₄)₂ are contained in 23.640 g of Mn(ClO₄)₂·6H₂O.
Keep in mind that the crystals of Mn(ClO₄)₂ are hydrated, and <em>we need to consider those six water molecules when calculating the molar mass of the crystals</em>.
Molar mass of Mn(ClO₄)₂·6H₂O = 54.94 + (35.45+16*4)*2 + 6*18 = 361.84 g/mol
Now we <u>proceed to calculate</u>:
- 23.640 g Mn(ClO₄)₂·6H₂O ÷ 361.84 g/mol = 0.0653 mol Mn(ClO₄)₂·6H₂O = mol Mn(ClO₄)₂
Now we divide the moles by the volume, to <u>calculate molarity</u>:
- 200 mL⇒ 200/1000 = 0.200 L
- 0.0653 mol Mn(ClO₄)₂ / 0.200 L = 0.3267 M
Answer:
B. To change from a liquid state to a solid state is called Freezing