<span>light colored and smooth surface would most likely be the best reflector of electromagnetic energy.Light, shiny surfaces are the best reflectors of radiation and they will allow the waves to reflect and bounce off rather than absorb. we can consider mirror as the example ,it will only reflect the light energy falling on them and it will not absorb. The darker coloured and rough surfaced substances will definitely absorb some amount of light falling on it. so light coloured smooth or shiny surfaced material would be the best reflector for electromagnetic energy.</span>
Answer:
M L1 = m L2 torques must be zero around the fulcrum
M = m L2 / L1 = .3 kg * 28 cm / 22 cm = .382 kg
Answer:
17.6 m/s²
Explanation:
Given:
= 90 m/s (final velocity)
= 2 m/s (initial velocity)
Δt = 5s (change in time)
The formula for acceleration is:
= Δv / Δt
We can find Δv by doing
Δv =
- 
Replace the values
Δv = 90m/s - 2m/s
Δv= 88m/s
Using the equation from earlier, we can find the acceleration by dividing the average velocity by time.
= Δv / Δt
= 
acceleration = 17.6 
Answer:
Range, 
Explanation:
The question deals with the projectile motion of a particle mass M with charge Q, having an initial speed V in a direction opposite to that of a uniform electric field.
Since we are dealing with projectile motion in an electric field, the unknown variable here, would be the range, R of the projectile. We note that the electric field opposes the motion of the particle thereby reducing its kinetic energy. The particle stops when it loses all its kinetic energy due to the work done on it in opposing its motion by the electric field. From work-kinetic energy principles, work done on charge by electric field = loss in kinetic energy of mass.
So, [tex]QER = MV²/2{/tex} where R is the distance (range) the mass moves before it stops
Therefore {tex}R = MV²/2QE{/tex}
If both waves have the same wavelength, then the amplitude of
their sum could be anything between 1 cm and 9 cm, depending
on the phase angle between them.
If the waves have different wavelengths, then the resultant is a beat
with an amplitude of 9 cm.