Answer:
Option B
Explanation:
Gravitational force is a force that attracts two bodies (with a mass) towards each other. If an object has a higher mass, the gravitational pull will be greater.
According to Newton’s inverse square law:
<em>"The gravitational force is inversely proportional to the square of the distance between two bodies."</em>
About this question, the greater the distance between two gravitating bodies, the weaker is the gravitational force between them.
All stars in a stellar cluster have roughly the same distance.
<h3>What coloration are celebrity clusters?</h3>
Open clusters have a tendency to be blue in color. They frequently include glowing gas and dust. The stars in an open cluster are young stars that all formed from the equal nebula. These warm blue stars are in an open cluster known as the Jewel Bo
<h3>Are stars in the identical cluster?</h3>
Though stellar associations are grouped in with megastar clusters, they're pretty a bit different. "Stellar associations are companies of tens to hundreds of stars that have similar a while and metallicities, and are moving in roughly the equal direction within the galaxy, but are no longer gravitationally bound," Geller said.
Learn more about star cluster here:
<h3>
brainly.com/question/20326847</h3><h3 /><h3>#SPJ4</h3>
The change in potential energy of an object is given by

where
m is the mass of the object
g is the gravitational acceleration

is the increase in altitude of the object
In our problem,

is the mass of the book,

and

is the increase in altitude of the book, so its variation of potential energy is
Answer:
Suppose two objects of different masses are moving with different velocities in the same direction on a straght-line before collision. After collision, they stick together and move with common (the same) velocity
Answer:
0.39
Explanation:
In order not to slide, you must have exactly the same acceleration of the train:

where
g = 9.81 m/s^2
There is only one force acting on you: the static frictional force that "pulls" you forward, and it is given by

According to Newton's second law, the net force acting on you (so, the frictional force) must be equal to your mass times the acceleration, so we have

from which we find

so, the minimum coefficient of static friction must be 0.39.