The answer is 3. The releasing of energy means exothermic reaction. So the ΔH should be negative. And the greatest quantity of energy released means that the greatest number. So according to the table I, the answer is 3.
Answer:
trigonal planar
Explanation:
Tri=three, three-dimensional arrangement of the atoms that constitute a molecule.
Answer: rise earlier and set later
Explanation: just trust me hope this helps
An increase in the number of gas molecules in the same volume container increases pressure. A decrease in container volume increases gas pressure. An increase in temperature of a gas in a rigid container increases the pressure.
Answer:
The mass of ice required to melt to lower the temperature of 353 mL of water from 26 ⁰C to 6 ⁰C is 85.4197 kg
Explanation:
Heat gain by ice = Heat lost by water
Thus,
Heat of fusion + 
Where, negative sign signifies heat loss
Or,
Heat of fusion + 
Heat of fusion = 334 J/g
Heat of fusion of ice with mass x = 334x J/g
For ice:
Mass = x g
Initial temperature = 0 °C
Final temperature = 6 °C
Specific heat of ice = 1.996 J/g°C
For water:
Volume = 353 mL
Density of water = 1.0 g/mL
So, mass of water = 353 g
Initial temperature = 26 °C
Final temperature = 6 °C
Specific heat of water = 4.186 J/g°C
So,


345.976x = 29553.16
x = 85.4197 kg
Thus,
<u>The mass of ice required to melt to lower the temperature of 353 mL of water from 26 ⁰C to 6 ⁰C is 85.4197 kg</u>