Answer:
I'll be your friend!
Explanation:
If you need help with anything just ask!
Answer:
Remove a H2 molecule from the left side of the equation.
Explanation:
i took the quiz and got it right
In the absence of neap tide transect data this hypothesis cannot be tested directly, but three pieces of indirect evidence weigh against it as a complete explanation.
Mass of Gold = 267.165 × 0.01552494829
⇒ 4.1477228099
The amount of heat(q) required to raise m grams of a substance-specific C from T1 to T2 is given by
q=m C (T2-T1) ........1
Given : q= 2.1200 J
the initial temperature of gold, T1 = 22.0Celcius
the final temperature of gold, T2 = 1064.4Celcius
specific heat of gold = 0.131
putting values in eq 1:
⇒ 2.1200 = m × 0.131 × (1064.4-22)
⇒ 2.1200 = m × 0.131 × 1042.4
⇒ 2.1200 / 136.5544
⇒ 0.01552494829
Since 1g= 0.01552494829 Pounds
Mass of Gold = 267.165 × 0.01552494829
⇒ 4.1477228099
Learn more about temperature here: brainly.com/question/11464844
#SPJ9
Answer: 0.225 atm
Explanation:
For this problem, we have to use Boyle's Law.
Boyle's Law: P₁V₁=P₂V₂
Since we are asked to find P₂, let's manipulate the equation.
P₂=(P₁V₁)/V₂

With this equation, the liters cancel out and we will be left with atm.
P₂=0.225 atm