Answer:
You can fill 212 balloons.
Explanation:
First we <u>calculate the helium moles in the small cylinder</u>, using <em>PV=nRT:</em>
- P = 14300 kPa ⇒ 14300 * 0.009869 = 141.13 atm
- R = 0.082 atm·L·mol⁻¹·K⁻¹
- T = 25 °C ⇒ 25 + 273.16 = 298.16 K
141.13 atm * 2.20 L = n * 0.082 atm·L·mol⁻¹·K⁻¹ * 298.16 K
Then we <u>calculate the number of moles that can fit in a single balloon</u>:
- 1.22 atm * 1.20 L = n * 0.082 atm·L·mol⁻¹·K⁻¹ * 298.16 K
Finally we <u>divide the total number of available moles by the number of moles in a single balloon</u>:
- 12.70 mol / 0.0599 mol = 212.09
So the answer is that you can fill 212 balloons.
<span>I'd chose D. In all five years of the study, the control resulted in the least soil erosion as well as substantially less water loss compared to the two treatment situations. </span>
Answer:
A chemical change happens when one chemical substance is transformed into one or more different substances, such as when iron becomes rust.
Explanation:
Answer: 5.039moles
Explanation:
No. of moles=mass/molar mass
= 362.7/72= 5.039moles
Molar mass of C5H12= 72