Answer:
Ionic Bond
Explanation:
The atom with the higher electronegativity wants to fill its valence electron shell (meaning it wants 8 electrons in this shell). The atom with lower electronegativity will want to empty <em>or donate </em>an electron so that it can have an empty valence shell.
When a specific amount of energy is emitted when excited electrons in an atom in a sample of an element return to the ground state, this emitted energy can
<span>be used to determine the "identity of the element".</span>
<span>There are few main factors affecting the atomic radii, the outermost electrons and the protons in the nucleus and also the shielding of the internal electrons. I would speculate that the difference in radii is given by the electron clouds since the electrons difference in these two elements is in the d orbital and both has at least 1 electron in the 4s (this 4s electron is the outermost electron in all the transition metals of this period). The atomic radio will be mostly dependent of these 4s electrons than in the d electrons. Besides that, you can see that increasing the atomic number will increase the number of protons in the nucleus decreasing the ratio of the atoms along a period. The Cu is an exception and will accommodate one of the 4s electrons in the p orbital.
</span><span>Regarding the density you can find the density of Cu = 8.96g/cm3 and vanadium = 6.0g/cm3. This also correlates with the idea that if these two atoms have similar volume and one has more mass (more protons; density is the relationship between m/V), then a bigger mass for a similar volume will result in a bigger density.</span>
The term that best described a 10 gram of KClO3 per 100 grams of water solution at 30 degree Celcius is Saturated. The solubility chart is needed for this work. If the solubility chart is drawn for KClO3, it will be observed that the proportion of KClO3 that is needed to dissolve in 100ml of water to make the solution saturated is 10 grams at 30 degree Celcius.