343 = 7 x 7 x 7
the answer is 7,7, and well 7
Answer:
1.44m^3
Step-by-step explanation:
Given data
Number of balls= 8
Diameter of ball = 70cm = 0.7m
Radius= 35cm= 0.35m
We know that a ball has a spherical shape
The volume of a sphere is
V= 4/3πr^3
substitute
V= 4/3*3.142*0.35^3
V= 0.18m^3
Hence if 1 ball has a volume of 0.18m^3
Then 8 balls will have a volume of
=0.18*8
=1.44m^3
Answer:
Step-by-step explanation:
Here's how you convert:
The little number outside the radical, called the index, serves as the denominator in the rational power, and the power on the x inside the radical serves as the numerator in the rational power on the x.
A couple of examples:
![\sqrt[3]{x^4}=x^{\frac{4}{3}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7Bx%5E4%7D%3Dx%5E%7B%5Cfrac%7B4%7D%7B3%7D)
![\sqrt[5]{x^7}=x^{\frac{7}{5}](https://tex.z-dn.net/?f=%5Csqrt%5B5%5D%7Bx%5E7%7D%3Dx%5E%7B%5Cfrac%7B7%7D%7B5%7D)
It's that simple. For your problem in particular:
is the exact same thing as ![\sqrt[3]{7^1}=7^{\frac{1}{3}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B7%5E1%7D%3D7%5E%7B%5Cfrac%7B1%7D%7B3%7D)
So for number 2 i am 100% on which the area of the triangle is 6.
and then 1 i think not 100% sure is an acute angle again not 100%
then 3. it don't make sense to me so idk about that 1 srry.
~Good Luck~
*I am assuming that the hexagons in all questions are regular and the triangle in (24) is equilateral*
(21)
Area of a Regular Hexagon:
square units
(22)
Similar to (21)
Area =
square units
(23)
For this case, we will have to consider the relation between the side and inradius of the hexagon. Since, a hexagon is basically a combination of six equilateral triangles, the inradius of the hexagon is basically the altitude of one of the six equilateral triangles. The relation between altitude of an equilateral triangle and its side is given by:


Hence, area of the hexagon will be:
square units
(24)
Given is the inradius of an equilateral triangle.

Substituting the value of inradius and calculating the length of the side of the equilateral triangle:
Side = 16 units
Area of equilateral triangle =
square units