Explanation:
The major difference between low and high explosives is the rate of detonation. Low explosives detonate very slowly (less than 1,000 meters per second), whereas high explosives detonate very quickly (from 1,000 to 8,500 meters per second).
High explosives among the given list are Lead azide residues, Ammonium nitrate residues, and Scraps of primacord. Whereas Nitrocellulose residues and, Potassium chlorate residues are low explosives.
<span>0.0165 m
The balanced equation for the reaction is
AgNO3 + MgCl2 ==> AgCl + Mg(NO3)2
So it's obvious that for each Mg ion, you'll get 1 AgCl molecule as a product. Now calculate the molar mass of AgCl, starting with looking up the atomic weights.
Atomic weight silver = 107.8682
Atomic weight chlorine = 35.453
Molar mass AgCl = 107.8682 + 35.453 = 143.3212 g/mol
Now how many moles were produced?
0.1183 g / 143.3212 g/mol = 0.000825419 mol
So we had 0.000825419 moles of MgCl2 in the sample of 50.0 ml. Since concentration is defined as moles per liter, do the division.
0.000825419 / 0.0500 = 0.016508374 mol/L = 0.016508374 m
Rounding to 3 significant figures gives 0.0165 m</span>
Answer:
It contains 0.105 mole cu
Explanation:
You need to look at the electronegativity and decide wheter the difference of both of the numbers are significant enough to form a polar bond