Answer:
ΔH° = -186.2 kJ
Explanation:
Hello,
This case in which the Hess method is applied to compute the required chemical reaction. Thus, we should arrange the given first two reactions as:
(1) it is changed as:
SnCl2(s) --> Sn(s) + Cl2(g)...... ΔH° = 325.1 kJ
That is why the enthalpy of reaction sign is inverted.
(2) remains the same:
Sn(s) + 2Cl2(g) --> SnCl4(l)......ΔH° = -511.3 kJ
Therefore, by adding them, we obtain the requested chemical reaction:
(3) SnCl2(s) + Cl2(g) --> SnCl4(l)
For which the enthalpy change is:
ΔH° = 325.1 kJ - 511.3 kJ
ΔH° = -186.2 kJ
Best regards.
A. The molecules of solids are close together and compact, liquids are spread out but not too far apart, and gas molecules are really far apart.
B. Increase in temperature causes pressure to go up. Decrease in temperature cause pressure to go down
Answer:
It was called MANURE
Explanation:
Its a type of fertilizer which plant are ploughed back into the soil.
GOOD LUCK
Answer:
Explanation:
<u>1) Data:</u>
a) m = 18 kg
b) T₁ = 285 K
c) T₂ = 318 K
d) Q = 267.3 kJ
e) S = ?
<u>2) Principles and equations</u>
The specific heat of a substance is the amount of heat energy absorbed to increase the temperature of certain amount (gram, kg, or moles, depending on the definition or units) of the substance in 1 ° C or 1 K.
The mathematical relation between the specific heat and the heat energy absorbed is:
Where,
- Q is the heat absorbed,
- S is the specific heat, and
- ΔT is the temperature increase (T₂ - T₁)
<u>3) Solution:</u>
<u>a) Substitute the data into the equation:</u>
- 267.3 kJ = 18 kg × S × (318 K - 285 K)
<u>b) Solve for S and compute:</u>
- S = 267.3 kJ / (18 kg × 33 K) = 0.45 kJ / (Kg . K)
The options have not units, but I notice that the first answer is 1,000 times the answer I obtained, so I will make a conversion of units.
<u>c) Convert to J /( kg . k):</u>
- 0.45 kJ / (Kg . K) × 1,000 J / kJ = 450 J / (kg . K)
Now we can see that the option A is is the answer, assuming the units.
You need to find moles of the gas, so you would use the ideal gas law:
PV=nRT
Pressure
Volume
n=moles
R= gas constant
Tenperature in Kelvin
n= PV/RT
(1.00atm)(1.35L)/(.08206)(332K) = 0.050mol
Molar mass is grams per mole, so
(3.75g/.050mol) = 75g/mol