<span>34.2 grams
Lookup the atomic weights of the involved elements
Atomic weight potassium = 39.0983
Atomic weight Chlorine = 35.453
Atomic weight Oxygen = 15.999
Molar mass KClO3 = 39.0983 + 35.453 + 3 * 15.999 = 122.5483 g/mol
Moles KClO3 = 87.4 g / 122.5483 g/mol = 0.713188188 mol
The balanced equation for heating KClO3 is
2 KClO3 = 2 KCl + 3 O2
So 2 moles of KClO3 will break down into 3 moles of oxygen molecules.
0.713188188 mol / 2 * 3 = 1.069782282 mols
So we're going to get 1.069782282 moles of oxygen molecules. Since each molecule has 2 atoms, the mass will be
1.069782282 * 2 * 15.999 = 34.23089345 grams
Rounding the results to 3 significant figures gives 34.2 grams</span>
Answer:
The specific heat of copper when heated to 221.32 (not listed form of heat measurement) is 221.32 (not listed form of heat measurement).
Explanation:
uh not really sure what else there is here, I may be missing something
Naproxen is known to be a weak acid. In order to calculate
its ka and pka, use the equation of getting the ph of weak acid which is ph=
-1/2 log [(Ka)(Mwa)]. The Ka value is 3.18x10^-5. The pKa can be obtained
through pKa = - log Ka. The pKa is 4.5.
Answer:
C: It depends on the entropy and enthalpy of the reaction.
Explanation:
Gibbs free energy is defined as the maximum amount of non-expansion work that can be gotten from a closed system. Now this work is usually done in place of the system’s internal energy and Energy that is not extracted as work is usually exchanged with the immediate surroundings in the form of heat.