The answer is <span>A. Speed=100 million m/s and frequency = 50 million Hz.</span>
Let's calculate for each choice the wavelength using the equation:
v = f × λ ⇒ λ = v ÷ f<span>
where:
v - the speed,
f - the frequency,
</span>λ - the wavelength.
A:
v = 100 000 000 m/s
f = 50 000 000 Hz = 50 000 000 1/s (Since f = 1/T, so units are Hz = 1/s)
⇒ λ = 100 000 000 ÷ 50 000 000 = 2 m
B:
v = 150 000 000 m/s
f = 1 500 Hz = 1 500 1/s
⇒ λ = 150 000 000 m/s ÷ 1 500 = 100 000 m
B:
v = 300 000 000 m/s
f = 100 Hz = 100 1/s
⇒ λ = 300 000 000 m/s ÷ 100 = 3 000 000 m
According to these calculations, the shortest wavelength is needed for choice A.
Static electricity<span> is a </span>buildup<span> of </span>electric<span> charges on objects. Charges </span>build up<span> when negative </span>electrons<span> are transferred from one object to another. The object that gives </span>up electrons<span> becomes positively charged, and the object that accepts the </span>electrons<span> becomes negatively charged. This can </span>happen<span> in several ways</span>
I don't understand what you are looking for. I can tell you that the speed of molecules does change during state changing.
Explanation:
In my view, when the Object A is attracted to a Charged object B. Object B should be Negatively or Positively charged. So Object B should be the Opposite charged according to the Object B
Example =
If Object B is Negatively Charged, the Object A should be Positively Charged
If the Object B is Positively Charged, the Object A should be Negatively Charged
Sometimes it can Mix as a Neutral as well
Hope this Helps