So, the time that taken for the astronaut to fall to the surface of the moon is <u>2.5 s.</u>
<h3>Introduction</h3>
Hi ! In this question, I will help you. In this question, you will learn about the fall time of the free fall motion. Free fall is a downward vertical motion without being preceded by an initial velocity. When moving in free fall, the time required can be calculated by the following equation:



With the following condition :
- t = interval of the time (s)
- h = height or any other displacement at vertical line (m)
- g = acceleration of the gravity (m/s²)
<h3>Problem Solving</h3>
We know that :
- h = height = 5.00 m
- g = acceleration of the gravity = 1.6 m/s²
What was asked :
- t = interval of the time = ... s
Step by step :




<h3>Conclusion</h3>
So, the time that taken for the astronaut to fall to the surface of the moon is 2.5 s.
<h3>See More</h3>
Answer:
The gravity, which is an acceleration to the center of the earth, will be the same.
Explanation:
The gravity on earth depends only on the masses and distance, between two objects. We can see it in the gravitational force equation.
Now if we put a man, with mass m, on the surface of the earth, with mass M, the distance from the center of mass and the man will be R (earth radius). Knowing that F = m*a, we can find the accelerations due to this mass M and this value will be 9.81 m/s².
On the other hand, the moon has a gravity value and is less than the earth, because its mass, and affects the water sea due to the gravitational force between earth and moon. If the moon changes the rate of its rotate it changes probably the distance between them, let's recall they must conserve angular momentum, but the gravity won't be affected.
Therefore, the gravity, which is an acceleration to the center of the earth, will be the same.
I hope it helps you!
Answer:
a) Suzie’s average acceleration = -6.46 m/s²
b) Force exerted to stop Suzie = 271.52 N
Explanation:
a) We have equation of motion, v = u + at
Final velocity, v = 0 m/s
Initial velocity, u = 32 mph = 14.22 m/s
Time, t =2.2 s
Substituting
0 = 14.22 + a x 2.2
a = -6.46 m/s²
Suzie’s average acceleration = -6.46 m/s²
b) Mass of Suzie = 42 kg
Force = Mass x Acceleration
F = Ma
F = 42 x -6.46 =-271.52 N
Force exerted to stop Suzie = 271.52 N
Answer:
3
Explanation:
the answer is number three
Answer:
a) 2.22 %
b) Range would be 60±1.998 km/h
Explanation:
Percentage uncertainty indicates the error of a reading. With the percentage uncertainty error for a measurement can be calculated.
a) Percentage uncertainty would be

Percent uncertainty is 2.22%
b) For 60 km/h error would be

Range would be 60±1.998 km/h