Answer:
0.16 m
Explanation:
A rectangular gasoline tank can hold 50.0 kg of gasoline when full, and the density of gasoline is 6.8 × 10² kg/m³. We can find the volume occupied by the gasoline (volume of the tank).
50.0 kg × (1 m³/6.8 × 10² kg) = 0.074 m³
The volume of the rectangular tank is:
volume = width × length × depth
depth = volume / width × length
depth = 0.074 m³ / 0.500 m × 0.900 m
depth = 0.16 m
It’s a total of 16 cm because it starts at 0 moves then moves to left then the right then the left
<span>antimony. It has +3,+5,-3 so yeah. the others carbon+2,+4,-4, chlorine +1,+5,+7,-1 but -1 is the most often so it isn't Cl, calcium +2.</span>
Explanation:
12) q = mCΔT
125,600 J = (500 g) (4.184 J/g/K) (T − 22°C)
T = 82.0°C
13) Solving for ΔT:
ΔT = q / (mC)
a) ΔT = 1 kJ / (0.4 kg × 0.45 kJ/kg/K) = 5.56°C
b) ΔT = 2 kJ / (0.4 kg × 0.45 kJ/kg/K) = 11.1°C
c) ΔT = 2 kJ / (0.8 kg × 0.45 kJ/kg/K) = 5.56°C
d) ΔT = 1 kJ / (0.4 kg × 0.90 kJ/kg/K) = 2.78°C
e) ΔT = 2 kJ / (0.4 kg × 0.90 kJ/kg/K) = 5.56°C
f) ΔT = 2 kJ / (0.8 kg × 0.90 kJ/kg/K) = 2.78°C
14) q = mCΔT
q = (2000 mL × 1 g/mL) (4.184 J/g/K) (80°C − 20°C)
q = 502,000 J
20) q = mCΔT
q = (2000 g) (4.184 J/g/K) (100°C − 15°C) + (400 g) (0.9 J/g/K) (100°C − 15°C)
q = 742,000 J
24) q = mCΔT
q = (0.10 g) (0.14 J/g/K) (8.5°C − 15°C)
q = -0.091 J
holding it and slowly moving forward 2.0m