Answer:
T = 19.75 N
Explanation:
given,
mass of ball = 0.25 Kg
radius = 0.5 m
frequency = 2 s⁻¹
tension in the string = ?
angular velocity
ω = 2 π f
ω = 2 π x 2
ω = 12.57 rad/s
tension on the string is equal to the centripetal force
T = m ω² r
T = 0.25 x 12.57² x 0.5
T = 19.75 N
Tension in the string is equal to T = 19.75 N
Answer:
The range of characteristic frequencies of electromagnetic radiation that are readily absorbed and emitted by an atom. The atomic spectrum is an effect of the quantized orbits of electrons around the atom
Additional Facts:
- Atomic spectra can also be analyzed to determine the composition of objects
- The frequency depends on the difference in energy between the orbitals. Explaining this phenomenon was crucial to the development of quantum mechanics
- Occurs due to the fact are quantized at specific levels determined by the atomic number
Answer:
The new period of rotation using the new spring would be less than the period of rotation using the original spring
Explanation:
Generally the period of rotation of the mass is mathematically represented as

Here I is the moment of inertia of the mass about the rotation axis and k is the spring constant
Now looking at the equation we can tell that T is inversely proportional to the square root of the spring constant which means that for a larger spring constant the time period would be lesser
Explanation :
It is given that,
BMR i.e basal metabolic rate is 88 kcal/hr. So, BMR in watts is converted by the following :
We know that, 1 kilocalorie = 4184 joules
So, 

J/sec is nothing but watts.
So, 
and 
So, it can be seen that the body can accommodate a modes amount of activity in hot weather but strenuous activity would increase the metabolic rate above the body's ability to remove heat.