1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
avanturin [10]
2 years ago
9

The net vertical force on a box F as a function of the vertical position y is shown below.

Physics
1 answer:
Ray Of Light [21]2 years ago
4 0

Answer:

W = 0 J

Explanation:

Formula for work done is;

W = F × d

Where;

W is work done

F is Force

d is distance covered

What this means is that we will calculate the area under which the given times in the graph pass.

Thus;

At constant force of F = 40 N which falls in between distance of 0 m and 2m,

W1 = 40 × 2 = 80 J

At constant force of -20 n which will fall between distance of 2 m and 6 m which is 4m, we have;

W2 = -20 × 4

W2 = -80 J

Thus, total workdone is;

W = W1 + W2

W = 80 - 80

W = 0 J

You might be interested in
The half-life of caffeine is 5 hours. If you ingested a 30 oz Big Gulp, how many oz of caffeine is left after one half life? * Y
xeze [42]

Answer:

The amount of caffeine left after one half life of 5 hours is 15 oz.

Explanation:

Half life is the time taken for a radioactive substance to degenerate or decay to half of its original size.

The half life of caffeine is 5 hours. So ingesting a 30 oz, this would be reduced to half of its size after the first 5 hours.

So that:

After one half life of 5 hours, the value of caffeine that would be left is;

                                    \frac{30}{2} = 15 oz

The amount of caffeine left after one half life of 5 hours is 15 oz.

8 0
3 years ago
Can you explain that gravity pulls us to the Earth & can you calculate weight from masses on both on Earth and other planets
schepotkina [342]
I don't actually understand what your question is, but I'll dance around the subject
for a while, and hope that you get something out of it.

-- The effect of gravity is:  There's a <em>pair</em> of forces, <em>in both directions</em>, between
every two masses.

-- The strength of the force depends on the <em>product</em> of the masses, so it doesn't matter whether there's a big one and a small one, or whether they're nearly equal. 
It's the product that counts.  Bigger product ==> stronger force, in direct proportion.

-- The strength of the forces also depends on the distance between the objects' centers.  More distance => weaker force.  Actually, (more distance)² ==> weaker force.

-- The forces are <em>equal in both directions</em>.  Your weight on Earth is exactly equal to
the Earth's weight on you.  You can prove that.  Turn your bathroom scale face down
and stand on it.  Now it's measuring the force that attracts the Earth toward you. 
If you put a little mirror down under the numbers, you'll see that it's the same as
the force that attracts you toward the Earth when the scale is right-side-up.

-- When you (or a ball) are up on the roof and step off, the force of gravity that pulls
you (or the ball) toward the Earth causes you (or the ball) to accelerate (fall) toward the Earth. 
Also, the force that attracts the Earth toward you (or the ball) causes the Earth to accelerate (fall) toward you (or the ball).
The forces are equal.  But since the Earth has more mass than you have, you accelerate toward the Earth faster than the Earth accelerates toward you.

--  This works exactly the same for every pair of masses in the universe.  Gravity
is everywhere.  You can't turn it off, and you can't shield anything from it.

-- Sometimes you'll hear about some mysterious way to "defy gravity".  It's not possible to 'defy' gravity, but since we know that it's there, we can work with it.
If we want to move something in the opposite direction from where gravity is pulling it, all we need to do is provide a force in that direction that's stronger than the force of gravity.
I know that sounds complicated, so here are a few examples of how we do it:
-- use arm-muscle force to pick a book UP off the table
-- use leg-muscle force to move your whole body UP the stairs
-- use buoyant force to LIFT a helium balloon or a hot-air balloon 
-- use the force of air resistance to LIFT an airplane.

-- The weight of 1 kilogram of mass on or near the Earth is 9.8 newtons.  (That's
about 2.205 pounds).  The same kilogram of mass has different weights on other planets. Wherever it is, we only know one of the masses ... the kilogram.  In order
to figure out what it weighs there, we need to know the mass of the planet, and
the distance between the kilogram and the center of the planet.

I hope I told you something that you were actually looking for.
7 0
3 years ago
It has been suggested that rotating cylinders several miles in length and several miles in diameter be placed in space and used
stepladder [879]

Answer:

the required revolution per hour is 28.6849

Explanation:

Given the data in the question;

we know that the expression for the linear acceleration in terms of angular velocity is;

a_{c} = rω²

ω² = a_{c} / r

ω = √( a_{c} / r )

where r is the radius of the cylinder

ω is the angular velocity

given that; the centripetal acceleration equal to the acceleration of gravity a a_{c}  = g = 9.8 m/s²

so, given that, diameter = 4.86 miles = 4.86 × 1609 = 7819.74 m

Radius r = Diameter / 2 = 7819.74 m / 2 = 3909.87 m

so we substitute

ω = √( 9.8 m/s² / 3909.87 m )

ω = √0.002506477 s²  

ω = 0.0500647 ≈ 0.05 rad/s  

we know that; 1 rad/s = 9.5493 revolution per minute

ω = 0.05 × 9.5493 RPM

ω = 0.478082 RPM  

1 rpm = 60 rph  

so  

ω = 0.478082 × 60

ω = 28.6849  revolutions per hour  

Therefore, the required revolution per hour is 28.6849

7 0
3 years ago
A bowling (mass = 7.2 kg, radius = 0.11 m) and a billiard ball (mass = 0.38 kg, radius = 0.028 m) may each be treated as uniform
cestrela7 [59]
Hope this helps you!

7 0
3 years ago
What is rotation in your own words. and you have to be detailed
attashe74 [19]

Answer:

The action of rotating around something like for ex.. Child A stands in the middle of a room while Child B goes around Child A, Child B is rotating around Child A. Another ex. is; The earth rotates around the sun every 365 days the earth is rotating or going around the sun in a circle. So rotating to me is the act of rotating around something in any way shape or form.

PS: A middle schooler answered this so if you don't wanna believe me or think I'm wrong because I am younger you do you.

7 0
3 years ago
Other questions:
  • A 13-N weight and a 12-N weight are connected by a massless string over a massless, frictionless pulley. The 13-N weight has a d
    5·1 answer
  • A graph of acceleration against force
    9·1 answer
  • Help with this please.
    8·1 answer
  • Research indicate that men and women of different races expectationz regarding to gender roles. Which of these statements regard
    10·2 answers
  • A stone was dropped off a cliff and hit the ground with a speed of 88 ft/s . What is the height of the cliff? (Use 32 ft/s 2 for
    11·1 answer
  • Si m1 es 6kg y m2 es 14kg y la masa de la polea es despreciable ¿Cual es la aceleración que adquiere el sistema?
    9·1 answer
  • An object has a mass of 12.8 kg and a velocity of 8.4 m/s. what is the kinetic energy of the object?
    10·1 answer
  • What is the S.I. unit of drift velocity and electron mobility?
    9·1 answer
  • Is a battery that generates hydrogen,is that very explosive
    10·1 answer
  • 1When you look through a magnifying glass, the objects you are looking at
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!