<h3>
Answer:</h3>
9.6724 g MgO
<h3>
General Formulas and Concepts:</h3>
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Chemistry</u>
<u>Stoichiometry</u>
- Reading a Periodic Table
- Using Dimensional Analysis
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
[RxN - Balanced] 2Mg + O₂ → 2MgO
[Given] 5.8332 g Mg
<u>Step 2: Identify Conversions</u>
[RxN] 2 mol Mg = 2 mol MgO
Molar Mass of Mg - 24.31 g/mol
Molar Mass of O - 16.00 g/mol
Molar Mass of MgO - 24.31 + 16.00 = 40.31 g/mol
<u>Step 3: Stoichiometry</u>
- Set up:

- Multiply/Divide:

<u>Step 4: Check</u>
<em>Follow sig fig rules and round. We are given 5 sig figs.</em>
9.67241 g MgO ≈ 9.6724 g MgO
Answer:
cells like bacteria are bisexual so they split and their offspring is 100 percent like the parent and this process happens over and over
Explanation:
Answer:
Hey mate, here is your answer. Hope it helps you.
Explanation:
To show how substances in a chemical reaction interact and to keep track of all elements and the number of atoms in each element on each side of the equation.The purpose of writing a balanced chemical equation is to know: the reactants (starting material) and products (end results) that occur. the ratios in which they react so you can calculate how much reactants you need and how much products can be formed.
Given that the pressure, temperature and area of effusion is constant, the rate of effusion is inversely proportional to the square root of the molecular mass of the gas.
Mr Oxygen = 32
Mr Argon = 40
Effusion Oxygen = 1/√32
Effusion Argon = 1/√40
Effusion Oxygen / Effusion Argon = √(40) / √(32)
=√(40/32) = √(5/4) = 1.19
Thus, Oxygen will effuse 1.19 times faster than Argon. The second option is correct.
We assume that the method that made use of urea was able to recover all of the recoverable substance. The method in question is the method that makes use of water.
The total amount of substance is 43 mg/dl. The recovered amount is 25 mg/dl. The percent recovery is
(25 mg/dl / 43 mg/dl) * 100 = 58.14%