Since rope is parallel to the inclined plane so here we can say that net force parallel to the person which is pulling upwards must counterbalance the component of weight of the person.
Now here we will do the components of the weight of the person
given that weight of the person = 500 N
now its components are


now here as we can say that one of the component is balanced here by the normal force perpendicular to plane
while the other component of the weight is balanced by the force applied on the rope
So here the force applied on the rope will be given as


so it apply 300 N force along the inclined plane
Meters for mass kilograms for volume cubic meters for density kilograms per cubic meter
We have that the most stable nuclei are the ones with the highest average binding energy. We see that Nitrogen has a mass number of 15 and that in this region of the graph average binding energy is low. Silver and Gold are along a line where there is a constant decline in average binding energy; silver has more than gold. However, we see that at the start of this decline, there is Fe 56. This region has the elements with the highest average binding energy; Nickel with a mass number of 58 is right there and thus it is the most stable nucleus out of the listed ones.
Answer:




Explanation:
r = Radius
k = Coulomb constant = 
Electric field is given by

The charge is 

The charge is 
The charge inside will have the polarity changed

Outside the charge will be

-- We're going to be talking about the satellite's speed.
"Velocity" would include its direction at any instant, and
in a circular orbit, that's constantly changing.
-- The mass of the satellite makes no difference.
Since the planet's radius is 3.95 x 10⁵m and the satellite is
orbiting 4.2 x 10⁶m above the surface, the radius of the
orbital path itself is
(3.95 x 10⁵m) + (4.2 x 10⁶m)
= (3.95 x 10⁵m) + (42 x 10⁵m)
= 45.95 x 10⁵ m
The circumference of the orbit is (2 π R) = 91.9 π x 10⁵ m.
The bird completes a revolution every 2.0 hours,
so its speed in orbit is
(91.9 π x 10⁵ m) / 2 hr
= 45.95 π x 10⁵ m/hr x (1 hr / 3,600 sec)
= 0.04 x 10⁵ m/sec
= 4 x 10³ m/sec
(4 kilometers per second)