The net force on the student is A) -294 N
Explanation:
Neglecting air resistance, there is only one force acting on the student: the force of gravity, which is given by

where
m is the mass of the student
g is the acceleration of gravity
In this problem, we have:
m = 30 kg is the mass of the student
is the acceleration of gravity, where the negative sign means the direction is downward
Substituting, we find the force of gravity on the student:

And since this is the only force acting on the student, it is also the net force on him.
Learn more about gravitational force:
brainly.com/question/1724648
brainly.com/question/12785992
#LearnwithBrainly
As we sit in a chair, Action force will be only in one direction and that direction would be downward only.
In short, Your Answer would be Option A
Hope this helps!
Explanation :
It is given that,
BMR i.e basal metabolic rate is 88 kcal/hr. So, BMR in watts is converted by the following :
We know that, 1 kilocalorie = 4184 joules
So, 

J/sec is nothing but watts.
So, 
and 
So, it can be seen that the body can accommodate a modes amount of activity in hot weather but strenuous activity would increase the metabolic rate above the body's ability to remove heat.
Answer:
54%
Explanation:
So, we have that the "magnitude of its displacement from equilibrium is greater than (0.66)A—''. Thus, the first step to take in answering this question is to write out the equation showing the displacement in simple harmonic motion which is = A cos w×t.
Therefore, we will have two instances t the displacement that is to say at a point 2π/w - a2 and the second point at a = a2.
Let us say that 2π/w = A, then, we have that a = A cos ^-1 (0.66)/2π. Also, we have that a2 = A/2 - A cos^- (0.66) / 2π.
The next thing to do is to calculate or determine the total length of of the required time. Thus, the total length is given as:
2a1 + ( A - 2a2) = 2A{ cos^-1 (0.66)}/ π.
Therefore, the total percentage of the period does the mass lie in these regions = 100 × {2a1 + ( A - 2a2) }/A = 2 { cos^-1 (0.66)}/ π × 100 = 54%.
Thus, the total percentage of the period does the mass lie in these regions = 54%.
H2 or H:H
hope this helps