(a) The net force on the shopping cart is zero.
(b) The the force of friction on the shopping cart is 25 N.
(c) When same force is applied to the shopping cart on a wet surface, it will move faster.
<h3>Net force on the shopping cart</h3>
The net force on the shopping cart is calculated as follows;
F(net) = F - Ff
where;
- F is the applied force
- Ff is the frictional force
ma = F - Ff
where;
- a is acceleration of the cart
- m is mass of the cart
at a constant velocity, a = 0
0 = F - Ff
F(net) = 0
F = Ff = 25 N
Net force is zero, and frictional force is equal to applied force.
<h3>On wet surface</h3>
Coefficient of kinetic friction of solid surface is greater than that of wet surface.
Since frictional force limit motion, when the frictional force is smaller, the object tends to move faster.
Thus, the cart will move faster on a wet surface due to decrease in friction.
Learn more about frictional force here: brainly.com/question/24386803
#SPJ1
Adaptation will mean taking action to minimize the negative effects of change. ... the use of new tools and techniques for decision-making, For example, projected increases in drought, fire, windstorms, and insect and disease outbreaks are expected to result in greater tree mortality. Fewer trees will reduce Canada’s timber supply, which in turn will affect the economic competitiveness of Canada’s forest industry. This would leave forestry-dependent communities vulnerable to job losses, closure of forestry processing facilities and an overall economic slump.
Answer:
7.9m/s
Explanation:
We are given that
Mass of wagon=40 kg

Tension=
Initial velocity of wagon=
Displacement=s=80 m
Net force applied on wagon=
By using 

We know that

Using the formula


<span>10 inches
You are at risk of serious injury if you sit less than 10 inches away from the steering wheel, because of the speed and force the airbag deploys at. This is also part of the reason why driving instructors now instruct you to hold the steering wheel from the lower parts, rather than the top, which can cause your thumbs to break if the air bag deploys.</span>