<h3>Newtons first law state that if a body is in motion it will be in motion and if a body is in rest it will tend to be in rest. This phenomena is also called INERTIA. Example: We tend to fall sideways when a car turn suddenly</h3>
Answer:
Approximately
, assuming that the acceleration of this ball is constant during the descent.
Explanation:
Assume that the acceleration of this ball,
, is constant during the entire descent.
Let
denote the displacement of this ball and let
denote the duration of the descent. The SUVAT equation
would apply.
Rearrange this equation to find an expression for the acceleration,
, of this ball:
.
Note that
and
in this question. Thus:
.
Let
denote the mass of this ball. By Newton's Second Law of Motion, if the acceleration of this ball is
, the net external force on this ball would be
.
Since
and
, the net external force on this ball would be:
.
Answer:
<h2>Total thermal energy for all air molecules is 59.54 J</h2>
Explanation:
As we know that the ball comes to rest finally so here we can say that
initial total potential energy of the ball is transferred to the air molecules
So here we have


So here we have

So all the gravitational potential energy of the ball will convert into thermal energy of air molecules which is equal to 59.54 J
The answer would be....
Explored the deepest known ocean trench.
The initial velocity of the train is 12.56 m/s.
<h3>
Initial velocity</h3>
The initial velocity of the train can be determined by using the first kinematic equation as shown below;
v = u + at
u = v - at
where;
- v is the final velocity = 110 km/h = 30.56 m/s
- u is the initial velocity
u = 30.56 - (36 x 0.5)
u = 12.56 m/s
Thus, the initial velocity of the train is 12.56 m/s.
Learn more about initial velocity here: brainly.com/question/19365526