Answer: 
Explanation:
According to Newton's 2nd Law of motion the force
is proportional to the mass
and acceleration
:
(1)
On the other hand, the equation for the Centripetal force is:
(2)
Where:
is the velocity
is the radius of the circular motion
Making (1) and (2) equal:
(3)
Hence:
This is the expression for the centripetal acceleration
It should be noted, this acceleration is directed toward the center of the circumference of the circular motion (that's why it's called centripetal acceleration).
Answer:54.70 N
Explanation:
Given
Gauge Pressure of 
i.e. 
Effective area 
initial Pressure
Gauge Pressure 


Force creates a pressure of
which will be equal to Gauge Pressure





Answer: (a) The magnitude of its temperature change in degrees Celsius is
.
(b) The magnitude of the temperature change (change in T = 15.1 K) in degrees Fahrenheit is
.
Explanation:
(a) Expression for change in temperature is as follows.

= 15.1 K
= 
= 
= 
Therefore, the magnitude of its temperature change in degrees Celsius is
.
(b) Change in temperature from Celsius to Fahrenheit is as follows.
F = 1.8C + 32
C = 
Since, K = C + 273
or, 

= 1.8 (15.1)
= 
or, = 
Thus, we can conclude that the magnitude of the temperature change (change in T = 15.1 K) in degrees Fahrenheit is
.
Answer:
the acceleration of the car is -4.9m/s2.
the direction is opposite to the actual direction, since the acceleration is negative.
Explanation:
Sucrose is a disaccharide which is composed of fructose and glucose. Sucrose molecule has oxygen atoms bonded to hydrogen atoms (O-H bonds - Polar groups) on all ends of its double 6-Carbon ring. The areas near the oxygen atoms are slightly negative, and the areas near the hydrogen atoms are slightly positive that is, the O-H bonds are polar. They bond with the neighbouring Oxygen and Hydrogen atoms because of their
dipole - dipole attractions and hence hydrogen bonds are formed.
However, the covalent bonds within the molecule aren't broken. But rather, the hydrogen bonds holding the sucrose molecules in the crystalline lattice.