Answer:
Explanation:
As the velocity of light is constant so the acceleration of the light is equal to zero.
a=
dt
dv
Answer:
Explanation:
For this problem, we just need to remember conservation of momentum, as there are no external forces in the horizontal direction:

where the suffix i means initial, and the suffix f means final.
The initial momentum will be:

as the second puck is initially at rest:

Using the unit vector
pointing in the original line of motion:



So:


Knowing the magnitude and directions relative to the x axis, we can find Cartesian representation of the vectors using the formula

So, our velocity vectors will be:


We got


So, we got the equations:

and
.
From the last one, we get:




and, for the first one:






so:

and


Answer:
induced emf = 28.65 mV
Explanation:
given data
diameter = 7.3 cm
magnetic field = 0.61
time period = 0.13 s
to find out
magnitude of the induced emf
solution
we know radius is diameter / 2
radius = 7.3 / 2
radius = 3.65 m
so induced emf is dπ/dt = Adb/dt
induced emf = A × ΔB / Δt
induced emf = πr² × ΔB / Δt
induced emf = π (0..65)² × ( 0.61 - (-0.28)) / 0.13
induced emf = 0.0286538 V
so induced emf = 28.65 mV
the answer is rust so the answer is rust
The vertical components of velocity is 10.35 m/s and the horizontal component of velocity is 38.6 m/s
<h3>What are the components of velocity?</h3>
We know that velocity is a vector quantity, a vector often can be resolved into its components. The vertical components is V sinθ while the horizontal component is vcosθ.
Hence;
Vertical component = 40 m/s sin 15 degrees = 10.35 m/s
Horizontal component = 40 cos 15 degrees = 38.6 m/s
Learn more about components of velocity:brainly.com/question/14478315
#SPJ1