<span>Answer: 17.8 cm
</span>
<span>Explanation:
</span>
<span>1) Since temperature is constant, you use Boyle's law:
</span>
<span>PV = constant => P₁V₁ = P₂V₂
</span><span>=> V₁/V₂ = P₂/P₁</span>
<span>
2) Since the ballon is spherical:
</span><span>V = (4/3)π(r)³</span>
<span>
Therefore, V₁/V₂ = (r₁)³ / (r₂)³
</span>
<span>3) Replacing in the equation V₁/V₂ = P₂/P₁:
</span><span><span>(r₁)³ / (r₂)³ </span>= P₂/P₁</span>
<span>
And you can solve for r₂: (r₂)³ = (P₁/P₂) x (r₁)³
</span>(r₂)³ = (1.0 atm / 0.87 atm) x (17 cm)³ = 5,647.13 cm³
<span>
r₂ = 17.8 cm</span>
Answer:
is a reactant; it is present before the reaction occurs.
Explanation:
In a chemical reaction the chemical formulas written before the arrow are described as reactants as they react together to form products which are written after the arrow.

Thus
and HCl are reactants here whereas
,
and
are products.
16 grams I think it might be it
Answer:
Explanation:
In an aqueous solution of potassium sulfate (K₂SO₄), the solute is K₂SO₄ and the solvent is water. The percentage by mass describes the grams of solute there are dissolved per 100 grams of solution. It can be calculated as:
mass percentage = (mass of solute/total mass of solution) x 100%
For example, in an aqueous solution which is 2% by mass of K₂SO₄, there are 2 grams of K₂SO₄ per 100 g of solution.
C12H22O11 aka carbon, hydrogen, and oxygen