<u>Answer:</u> The correct option is A) They have fixed energy values.
<u>Explanation:</u>
Electron is one of the sub-atomic particle present around the nucleus of an atom which is negatively charged.
In an atomic model, it is assumed that the electron revolves around the nucleus in discrete orbits having fixed energy levels.
These electrons when jumping from one energy level to another, some amount of radiation is either emitted or absorbed.
These fixed energy levels are given by the Bohr model and thus, the electrons are quantized.
Hence, the correct option is A) They have fixed energy values.
Answer:
Total number of ATP molecules generated from a 32-carbon fatty acid = 206 ATP molecules
Explanation:
A 32 carbon fatty acid which undergoes complete beta-oxidation assuming that the fatty acid is fully saturated will pass through the beta-oxidation cycle 14 times to produce the following:
15 molecules of acetylCoA, 14 molecules of FADH₂, and 14 molecules of NADH.
Each of the 15 acetylCoA molecules can be further oxidized in the citric acid cycle to yield the following: 15 × 3 NADH; 15 × 1 FADH₂, and 15 ATP molecules from the substrate level phosphorylation occuring at the succinylCoA synthetase catalyzed-reaction.
Total FADH₂ produced = 15 + 14 = 29 molecules of FADH₂
Total NADH produced = 45 + 14 = 59 molecules of NADH
The FADH₂ and NADH will each donate a pair of electrons to the electron transfer flavoprotein and mitochondrial NADH dehydrogenase respectively of the electron transport chain, and about 1.5 and 2.5 molecules of ATP are generated respectively when these electrons are transfered to molecular oxygen.
Thus, number of molecules of ATP generated by 29 molecules of FADH₂ = 1.5 × 29 = 43.5 molecules of ATP.
Number of molecules of ATP generated by 59 molecules of NADH = 2.5 × 59 = 147.5
Sum of ATP generated from FADH₂ and NADH = 43.5 + 147.5 = 191 ATP molecules
Total number of ATP molecules generated = 191 + 15 = 206 ATP molecules
Total number of ATP molecules generated from a 32-carbon fatty acid = 206 ATP molecules
Answer:
Take approx 41.7 mL of 12-M HCl in a 1.00-L flask and fill the rest of the volume with distilled water.
Explanation:
Hello,
In this case, for the dilution process from concentrated 12-M hydrochloric acid to 1.00 L of the diluted 0.50M hydrochloric acid, the volume of concentrated HCl you must take is computed by considering that the moles remain constant for all dilution processes as shown below:

Which can also be written in terms of concentrations and volumes:

Thus, solving for the initial volume or aliquot that must be taken from the 12-M HCl, we obtain:

It means that you must take approx 41.7 mL of 12-M HCl in a 1.00-L flask and fill the rest of the volume with distilled water for such preparation.
Best regards.
Answer: C
Explanation:
Some poly nuclear aromatic hydrocarbons are not carcinogenic in themselves. However, when these are made to interact with living cells, enzymes in the cells could convert the polynuclear aromatic hydrocarbon into a carcinogenic material such as benzo-[a]-pyrene. This can now interact adversely with the deoxyribonucleic acid of living cells leading to genetic mutation, that is, irreversible changes in the genes of organisms.