Answer:
1. NaN₃(s) → Na(s) + 1.5 N₂(g)
2. 79.3g
Explanation:
<em>1. Write a balanced chemical equation, including physical state symbols, for the decomposition of solid sodium azide (NaN₃) into solid sodium and gaseous dinitrogen.</em>
NaN₃(s) → Na(s) + 1.5 N₂(g)
<em>2. Suppose 43.0L of dinitrogen gas are produced by this reaction, at a temperature of 13.0°C and pressure of exactly 1atm. Calculate the mass of sodium azide that must have reacted. Round your answer to 3 significant digits.</em>
First, we have to calculate the moles of N₂ from the ideal gas equation.

The moles of NaN₃ are:

The molar mass of NaN₃ is 65.01 g/mol. The mass of NaN₃ is:

There are 1000 meters in 1 Kilometer.
Hope this helps you. :)
Answer:
1. Watt stream engine
2. McCormick reaper
3. Fulton steamboat
These are the correct answers.
Have A good day!! :)
More unstable an electron configuration , the more reactive an atom will become.
How electron configuration influences the chemical behavior of an atom?
This is happen generally, If we look at the Group 1 elements in the periodic table, they are all highly reactive as they have 1 electron in their outermost shells - an unstable configuration in terms of energy.
Also, the noble gases in Group 8 in the periodic table are 'inert' that means they don't react (or more correctly, have an incredibly low reactivity). This is because they have 8 electrons in their outermost shell and thus have no need to acquire or lose electrons to possess a stable electron configuration.
Hence, electron configuration influences the chemical behavior of an atom.
learn more about electronic configuration here :
brainly.com/question/26084288
#SPJ4
Answer:
1. Nuts
2. Canned meats and seafood
3. Dried grains
4. Dark chocolate
5. Protein powders