Based on the data given in this question, the statement that shows a correct interpretation of the chemical reactions is as follows: reaction A was exothermic and reaction B was endothermic.
<h3>What are endothermic and exothermic reactions?</h3>
Endothermic reaction is a chemical reaction that absorbs heat energy from its surroundings while exothermic reaction is a reaction that releases energy in the form of heat.
Endothermic reactions leave their surroundings cooler while exothermic reactions leave their surroundings hotter.
According to this question, the initial and final temperatures of two reactions are given as follows:
- Reaction A: 25.1°C and 30.2°C
- Reaction B: 25.1°C and 20.0°C
From the above data, reaction A was exothermic because it increased the surrounding temperature and reaction B was endothermic because it reduced the surrounding's temperature.
Learn more about endothermic and exothermic at: brainly.com/question/23184814
#SPJ1
Actually, we can answer the problem even without the first statement. All we have to do is write the reaction for the production of sulfur trioxide.
2 S + 3 O₂ → 2 SO₃
The stoichiometric calculations is as follows:
7 g S * 1 mol/32.06 g S = 0.218 mol S
Moles O₂ needed = 0.218 mol S * 3 mol O₂/2 mol S = 0.3275 mol O₂
Since the molar mas of O₂ is 32 g/mol,
Mass of O₂ needed = 0.3275 mol O₂ * 32 g/mol = 10.48 g O₂
<em>Answer:</em>
- The atom have a full valence electron shell.
<em>Explanation:</em>
- My question is that why covalent bonds take place?
Every atoms tends to from bond with another atoms in order to get nearest electronic configuration of nobel gases. They become stable when their valence shell become complete. So when covelant bond forms between atoms, share electrons to each other and stabilize themselves.
Answer:
Magnesium oxide is a binary compound of magnesium and oxygen while magnesium ribbon consists only of magnesium atoms.
Explanation:
The burning of magnesium in oxygen is a chemical change. It produces magnesium oxide having greater mass than magnesium ribbon. The greater mass results from the fact that the chemical reaction has added another element to the sample- oxygen. The mass of magnesium ribbon is the mass of magnesium atoms alone but in magnesium oxide, we consider the masses of magnesium and oxygen atoms making magnesium oxide heavier than magnesium ribbon.