1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
notsponge [240]
2 years ago
13

Use the calculator to find the value of x for the equation: × + 3.2=6.3​

Mathematics
2 answers:
Harman [31]2 years ago
8 0

Answer:

x = 3.1

Step-by-step explanation:

Subtract 6.3 - 3.2 to find the value of x. You get 3.1.

Hope it helps!

eimsori [14]2 years ago
3 0

Answer:

the answer is *x=3.1*. I hope this help =]

You might be interested in
Determine 30% of 70.<br><br><br> using double number line
Vadim26 [7]

Answer:

100%     -     70

---------------------

30%      -      x

100x=70*30\\100x=2100\\x=\frac{2100}{100}\\x=21

3 0
2 years ago
Jamie kept track of the total hours and minutes she worked this week at the local health food store.
ziro4ka [17]

Answer:

18.05

Step-by-step explanation:

3 0
2 years ago
1 1/3 MULIPLIED BY 2 3/4 =
Vlad [161]

Answer:

use the mixed fraction mathsoup calculator, it shows step by step, im just trying to help

Step-by-step explanation:

hope i helped:)

7 0
2 years ago
Read 2 more answers
Assume that a randomly selected subject is given a bone density test. Those test scores are normally distributed with a mean of
jarptica [38.1K]

Answer:

The "probability that a given score is less than negative 0.84" is  \\ P(z.

Step-by-step explanation:

From the question, we have:

  • The random variable is <em>normally distributed</em> according to a <em>standard normal distribution</em>, that is, a normal distribution with \\ \mu = 0 and \\ \sigma = 1.
  • We are provided with a <em>z-score</em> of -0.84 or \\ z = -0.84.

Preliminaries

A z-score is a standardized value, i.e., one that we can obtain using the next formula:

\\ z = \frac{x - \mu}{\sigma} [1]

Where

  • <em>x</em> is the <em>raw value</em> coming from a normal distribution that we want to standardize.
  • And we already know that \\ \mu and \\ \sigma are the mean and the standard deviation, respectively, of the <em>normal distribution</em>.

A <em>z-score</em> represents the <em>distance</em> from \\ \mu in <em>standard deviations</em> units. When the value for z is <em>negative</em>, it "tells us" that the raw score is <em>below</em> \\ \mu. Conversely, when the z-score is <em>positive</em>, the standardized raw score, <em>x</em>, is <em>above</em> the mean, \\ \mu.

Solving the question

We already know that \\ z = -0.84 or that the standardized value for a raw score, <em>x</em>, is <em>below</em> \\ \mu in <em>0.84 standard deviations</em>.

The values for probabilities of the <em>standard normal distribution</em> are tabulated in the <em>standard normal table, </em>which is available in Statistics books or on the Internet and is generally in <em>cumulative probabilities</em> from <em>negative infinity</em>, - \\ \infty, to the z-score of interest.

Well, to solve the question, we need to consult the <em>standard normal table </em>for \\ z = -0.84. For this:

  • Find the <em>cumulative standard normal table.</em>
  • In the first column of the table, use -0.8 as an entry.
  • Then, using the first row of the table, find -0.04 (which determines the second decimal place for the z-score.)
  • The intersection of these two numbers "gives us" the cumulative probability for z or \\ P(z.

Therefore, we obtain \\ P(z for this z-score, or a slightly more than 20% (20.045%) for the "probability that a given score is less than negative 0.84".

This represent the area under the <em>standard normal distribution</em>, \\ N(0,1), at the <em>left</em> of <em>z = -0.84</em>.

To "draw a sketch of the region", we need to draw a normal distribution <em>(symmetrical bell-shaped distribution)</em>, with mean that equals 0 at the middle of the distribution, \\ \mu = 0, and a standard deviation that equals 1, \\ \sigma = 1.

Then, divide the abscissas axis (horizontal axis) into <em>equal parts</em> of <em>one standard deviation</em> from the mean to the left (negative z-scores), and from the mean to the right (positive z-scores).  

Find the place where z = -0.84 (i.e, below the mean and near to negative one standard deviation, \\ -\sigma, from it). All the area to the left of this value must be shaded because it represents \\ P(z and that is it.

The below graph shows the shaded area (in blue) for \\ P(z for \\ N(0,1).

7 0
3 years ago
Chnstopher earned $142.20. He saved $24.50. He spent the rest on 2 new pairs
pogonyaev

Answer:

$58.25

Step-by-step explanation:

142.20 - 24.50 = 117.50

117.50 / 2 = 58.25

6 0
3 years ago
Read 2 more answers
Other questions:
  • Last year shantell bought a car for $24,000 the current value of the car is $21,000 find the percent decrease in the value of th
    9·1 answer
  • Sharon has some one-dollar bills and some five-dollar bills. she has 14 bills. the value of the bills is $30.
    9·1 answer
  • Somebody please help me on this math problem
    10·2 answers
  • The graph represents the height of a ball after being thrown versus time. Which statement is true?
    13·1 answer
  • Plz help will be marked BRAINLIEST!!<br> Thanks man!
    9·2 answers
  • Identify the common factors of each set of numbers.<br> 1. 12 and 20<br> 2. 24 and 30
    8·1 answer
  • Need help pls <br> simplify <br> NO LINKS!!
    5·2 answers
  • Which expression could be represented by this model?
    6·1 answer
  • The profit p gained from selling an item can be modeled by a quadratic function in terms of its cost c. If the cost of the item
    11·2 answers
  • HIE
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!