Answer:
No, there won't be a collision.
Explanation:
We will use the constant acceleration formulas to calculate,
v = u + a*t
0 = 25 + (-0.1)*t
t = 250 seconds (the time taken for the passenger train to stop)
v^2 = u^2 + 2*a*s
0 = (25)^2 + 2*(-0.1)*s
s = 3125 m (distance traveled by passenger train to stop)
If the distance traveled by freight train in 250 seconds is less than (3125-200=2925 m) than the collision will occur
Speed*time = distance
Distance = (15)*(250)
Distance = 3750 m
As the distance is way more, there won’t be a collision
no, work is = force * distance or displacement
Answer:
Explanation:
Given
mass of water molecule 
mass of person 
It is given that body is mostly made up of water
suppose n water molecules constitutes 62 kg
so 


Answer:
the time needed for her to close the door is 1.36 s.
Explanation:
given information:
Force, F = 220 N
width, r = 1.40 m
weight, W = 790 N
height, h = 3.00 m
angle, θ = 90° = π/2
to find the times needed to close the door we can use the following equation
θ = ω₀t + 1/2 αt²
where
θ = angle
ω = angular velocity
α = angular acceleration
t = time
in this case, the angular velocity is zero. thus,
θ = 1/2 αt²
now, we can find the angular speed by using the torque formula
τ = I α
where
τ = torque
I = Inertia
we know that
τ = F r
and
I = 1/3 mr²
so,
τ = I α
F r = 1/3 mr² α
α = 3 F/mr
= 3 F/(w/g)r
= 3 (220)/(790/9.8) 1.4
= 5.85 rad/s²
θ = 1/2 αt²
π/2 = 1/2 5.85 t²
t = 1.36 s
Answer:
The correct option is C
Explanation:
According to third equation of motion, v
2
=u
2
+2ax
Here, u=0 m/s
a=−g and x=−h
Negative sign indicates downward direction. Displacement and acceleration both are downwards.
So,v=±
2(−g)(−h)
We take minus sign because it is downwards.
v=−
2gh
After bouncing. velocity becomes 80% of v, i.e.,
v
′
=+0.8
2gh
(positive sign because the direction of ball has reversed after bouncing and is upwards.
Applying third equation of motion again, for u=v
′
, v=0 and a=−g
v
2
=u
2
+2×a×x
Thus,
0=0.64(2gh)+2(−g)x
or
x=0.64h