Answer:
In a vacuum
Explanation:
Sound is a type of mechanical waves. Mechanical waves are waves that propagate through the oscillation of the particles in a medium, which can be either gas, liquid or solid.
A sound wave in air, for instance, is simply produced by the oscillations of the air particles back and forth along the direction of motion of the wave.
Given this definition, it is clear that mechanical waves (and so, sound waves as well) cannot be transmitted if there is no medium: therefore, they cannot be transmitted in a vacuum. So, the sound of the ringing bell would not be present in a vacuum.
Answer:
V = 0.39 m/s
Explanation:
Given that,
Mass of hockey puck, m = 0.2 kg
Mass of goalie = 40 kg
Speed of hockey puck, v = 80 m/s
We need to find the speed with which the goalie slide on the slide. Let V be the speed. Using the conservation of momentum as follows :

So, the required speed is 0.39 m/s.
Answer:

Explanation:
m = Mass of object = 
mg = Weight of object = 20 N
g = Acceleration due to gravity = 
v = Final velocity = 15 m/s
u = Initial velocity = 0
d = Distance moved by the object = 150 m
= Angle of slope = 
f = Force of friction
fd = Work done against friction
The force balance of the system is

The work done against friction is
.
Answer:
true
Explanation:
as long as you are interested, you are happy
Answer:
The balloon will continue to expand and eventually burst.
Explanation:
Simply, the reason for this is because the density of the atmosphere decreases gradually as you increase in altitude closer to space. This means that the air on the outside of the balloon can't provide enough pressure over the surface of the balloon in order to counteract the gas on the inside of the balloon from expanding.