Un átomo es una porción material menor de un elemento químico que interviene en las reacciones químicas y posee las propiedades características de dicho elemento.
We can use the law of conservation of energy to solve the problem.
The total mechanical energy of the system at any moment of the motion is:

where U is the potential energy and K the kinetic energy.
At the beginning of the motion, the ball starts from the ground so its altitude is h=0 and therefore its potential energy U is zero. So, the mechanical energy is just kinetic energy:

When the ball reaches the maximum altitude of its flight, it starts to go down again, so its speed at that moment is zero: v=0. So, its kinetic energy at the top is zero. So the total mechanical energy is just potential energy:

But the mechanical energy must be conserved, Ef=Ei, so we have

and so, the potential energy at the top of the flight is
Answer:
2.8 cm
Explanation:
= Separation between two first order diffraction minima = 1.4 cm
D = Distance of screen = 1.2 m
m = Order
Fringe width is given by

Fringe width is also given by

For second order

Distance between two second order minima is given by


The distance between the two second order minima is 2.8 cm
Answer:
"A turbine takes the kinetic energy of a moving fluid, air in this case, and converts it to a rotary motion. As wind moves past the blades of a wind turbine, it moves or rotates the blades. These blades turn a generator."
Answer:
240 ohms
Explanation:
From Ohms law we deduce that V=IR and making R the subject of the formula then R=V/I where R is resistance, I is current and V is coltage across. Substituting 120 V for V and 0.5 A for A then
R=120/0.5=240 Ohms
Alternatively, resistance is equal to voltage squared divided by watts hence 