<span>120 miles is the answer
</span>
The answer is A.Yes
Explanation:
The amplitude of a wave is the height of a wave as measured from the highest point of the wave to the lowest on the wave.
Answer:
option C
Explanation:
given,
force act on west = 20 lb
force act at 45° east of north = 80 lb
magnitude of force = ?
∑ F y = 80 cos 45⁰
F y = 56.57 lb
magnitude of forces in x- direction
∑ F x = -20 + 80 sin 45⁰
= 36.57 lb
net force
F = 
F = 
F = 67.36 lb≅ 67 lb
hence, the correct answer is option C
Answer:
<h3>The answer is 5.4 kg</h3>
Explanation:
The mass of the object can be found by using the formula

f is the force
a is the acceleration
From the question we have

We have the final answer as
<h3>5.4 kg</h3>
Hope this helps you
Answer:
r = 4.44 m
Explanation:
For this exercise we use the Archimedes principle, which states that the buoyant force is equal to the weight of the dislodged fluid
B = ρ g V
Now let's use Newton's equilibrium relationship
B - W = 0
B = W
The weight of the system is the weight of the man and his accessories (W₁) plus the material weight of the ball (W)
σ = W / A
W = σ A
The area of a sphere is
A = 4π r²
W = W₁ + σ 4π r²
The volume of a sphere is
V = 4/3 π r³
Let's replace
ρ g 4/3 π r³ = W₁ + σ 4π r²
If we use the ideal gas equation
P V = n RT
P = ρ RT
ρ = P / RT
P / RT g 4/3 π r³ - σ 4 π r² = W₁
r² 4π (P/3RT r - σ) = W₁
Let's replace the values
r² 4π (1.01 10⁵ / (3 8.314 (70 + 273)) r - 0.060) = 13000
r² (11.81 r -0.060) = 13000 / 4pi
r² (11.81 r - 0.060) = 1034.51
As the independent term is very small we can despise it, to find the solution
r = 4.44 m