Answer:
P = 5280 W
Explanation:
The conductivity of the materials determines that heat flows from the hot part to the cold part, the equation for thermal conductivity transfer is
P = Q / t = k A (
-
) / L
Where k is the thermal conductivity of the glass 0.8 W / ºC, A the area of the window, T the temperature and L is glass thickness
Let's calculate the window area
A = l * a
A = 2.0 1.0
A = 2.0 m²
Let's replace
L = 0.5 cm (1 m / 100 cm) = 0.005 m
P = 0.8 2 (20.5 - 4) / 0.005
P = 5280 W
<h2>Electrostatic Potential Decreases</h2>
Explanation:
- If the spacing between two closely spaced oppositely charged parallel plates is decreased the electrostatic potential difference between the plates will decrease.
- An electrostatic potential that is also referred to as the electric field potential or potential drop is the amount of work required to replace a unit of charge from a reference point to a specific point inside the electric field without any change in acceleration.
- Therefore, if the distance will decrease between oppositely charged plates there will be more affinity to attract which will reduce the amount of work done thus decreasing the electric potential
∴ The Correct option is (b)
Answer:
Primary waves (P-waves)
Explanation:
Due to excess of the energy inside the earth when the tectonic plates begin to slide or fracture then the energy is released in the form of seismic waves, this causes the earthquake.
<u>Two types of seismic waves are generally responsible for the earth quakes:</u>
- body waves
- surface waves
Body waves are of two types:
Primary waves (P-waves)
These are the fastest of all the waves involved in the earth-quake which travel at a speed of 1.6 km to 8 km per second.
They can pass trough solids, liquids and gases. They arrive at the surface as an instant thud.
Secondary waves (S-waves)
They can only pass through the solids and they move slower than the P-waves.
As S-waves move, they displace the rock particles, pushing them outwards perpendicular to the wave-path that leads to the earthquake-related first rolling period.
Surface waves (L-waves/ long waves)
- These waves move along the surface of the earth. They are responsible for the earthquake's carnage.
- They move up and down the Earth's surface, rocking the foundations of man-made structures.
- Surface waves are slowest of the three waves, which means that they are the last to arrive. So at the end of an earthquake usually comes the most powerful shaking.
We have to add two vectors.
Vector #1: 0.15 m/s north
Vector #2: 1.50 m/s east
Their sum:
Magnitude: √(0.15² + 1.50²)
Magnitude = √(0.0225+2.25)
Magnitude = √2.2725
Magnitude = <em>1.5075 m/s</em>
Direction = arctan(0.15/1.50) north of east
Direction = <em>5.71° north of east</em>
Answer:
Δt'/ T% = 90.3%
Explanation:
Simple harmonic movement is described by the expression
x = A cos (wt)
we find the time for the two points of motion
x = - 0.3 A
-0.3 A = A cos (w t₁)
w t₁ = cos -1 (-0.3)
remember that angles are in radians
w t₁ = 1.875 rad
x = 0.3 A
0.3 A = A cos w t₂
w t₂ = cos -1 (0.3)
w t₂ = 1,266 rad
Now let's calculate the time of a complete period
x= -A
w t₃ = cos⁻¹ (-1)
w t₃ = π rad
this angle for the forward movement and the same time for the return movement in the oscillation to the same point, which is the definition of period
T = 2 t₃
T = 2π / w s
now we can calculate the fraction of time in the given time interval
Δt / T = (t₁ -t₂) / T
Δt / T = (1,875 - 1,266) / 2pi
Δt / T = 0.0969
This is the fraction for when the mass is from 0 to 0.3, for regions of oscillation of greater amplitude the fraction is
Δt'/ T = 1 - 0.0969
Δt '/ T = 0.903
Δt'/ T% = 90.3%