Answer:
Energy is released as heat during the reaction.
Answer:
False
Explanation:
Half life is the time period at which the concentration of the radioactive substance in decay reduced to half.
<u>Thus, if the hydrogen-3 has gone 2 half lives, it means that it has first reduced to its half and then again the half of what it was, i.e. 1/4</u>
Thus, after two successive half-lives, the concentration must be 1/4 of the initial concentration and hence, the statement is false.
First, we need to get n1 (no.of moles of water ): when
mass of water = 0.0203 g and the volume = 1.39 L
∴ n1 = mass / molar mass of water
= 0.0203g / 18 g/mol
= 0.00113 moles
then we need to get n2 (no of moles of water) after the mass has changed:
when the mass of water = 0.146 g
n2 = mass / molar mass
= 0.146g / 18 g/ mol
= 0.008 moles
so by using the ideal gas formula and when the volume is not changed:
So, P1/n1 = P2/n2
when we have P1 = 1.02 atm
and n1= 0.00113 moles
and n2 = 0.008 moles
so we solve for P2 and get the pressure
∴P2 = P1*n2 / n1
=1.02 atm *0.008 moles / 0.00113 moles
= 7.22 atm
∴the new pressure will be 7.22 atm
Answer:
4.59 × 10⁻³⁶ kJ/photon
Explanation:
Step 1: Given and required data
- Wavelength of the violet light (λ): 433 nm
- Planck's constant (h): 6.63 × 10⁻³⁴ J.s
- Speed of light (c): 3.00 × 10⁸ m/s
Step 2: Convert "λ" to meters
We will use the conversion factor 1 m = 10⁹ nm.
433 nm × 1 m/10⁹ nm = 4.33 × 10⁷ m
Step 3: Calculate the energy (E) of the photon
We will use the Planck-Einstein's relation.
E = h × c/λ
E = 6.63 × 10⁻³⁴ J.s × (3.00 × 10⁸ m/s)/4.33 × 10⁷ m
E = 4.59 × 10⁻³³ J = 4.59 × 10⁻³⁶ kJ
This is based on your personal opinion lol but ig you can say public speaking