Answer:
If the heat engine operates for one hour:
a) the fuel cost at Carnot efficiency for fuel 1 is $409.09 while fuel 2 is $421.88.
b) the fuel cost at 40% of Carnot efficiency for fuel 1 is $1022.73 while fuel 2 is $1054.68.
In both cases the total cost of using fuel 1 is minor, therefore it is recommended to use this fuel over fuel 2. The final observation is that fuel 1 is cheaper.
Explanation:
The Carnot efficiency is obtained as:

Where
is the atmospheric temperature and
is the maximum burn temperature.
For the case (B), the efficiency we will use is:

The work done by the engine can be calculated as:
where Hv is the heat value.
If the average net power of the engine is work over time, considering a net power of 2.5MW for 1 hour (3600s), we can calculate the mass of fuel used in each case.

If we want to calculate the total fuel cost, we only have to multiply the fuel mass with the cost per kilogram.

Answer:
after 8 stepshddnffuddbnggkbdbkloyr
Answer:
a)
, b) Yes.
Explanation:
a) The maximum thermal efficiency is given by the Carnot's Cycle, whose formula is:


b) The claim of the inventor is possible since real efficiency is lower than maximum thermal efficiency.
Answer:
gauge pressure is 133 kPa
Explanation:
given data
initial temperature T1 = 27°C = 300 K
gauge pressure = 300 kPa = 300 × 10³ Pa
atmospheric pressure = 1 atm
final temperature T2 = 77°C = 350 K
to find out
final pressure
solution
we know that gauge pressure is = absolute pressure - atmospheric pressure so
P (gauge ) = 300 × 10³ Pa - 1 ×
Pa
P (gauge ) = 2 ×
Pa
so from idea gas equation
................1
so
P2 = 2.33 ×
Pa
so gauge pressure = absolute pressure - atmospheric pressure
gauge pressure = 2.33 ×
- 1.0 ×
gauge pressure = 1.33 ×
Pa
so gauge pressure is 133 kPa
Answer:
no⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀