Answer:
complex
Explanation:
becaause it fits in the words equation I hoped i helped
<h2>Answer:</h2>
The density of mercury molecule is higher than water.
<h3>Explanation:</h3>
Density is defined as mass per unit volume.In other words, density is the amount of matter within a given amount of space. water has the density of 1.0 gram per milliliter whereas the mercury has a density of 13.6 grams per centimeter squared.
One reason for the differences in density between mercury and water is that the atomic mass of mercury is 200.59 grams per mole. The atomic mass of water is 18.0 grams per mole. This is because mercury has a larger nucleus than hydrogen or water.
Additionally, there are strong inter-molecular forces (hydrogen bonds) between water molecules. hydrogen molecules do not stack upon one another as nicely as mercury atoms. Thus, there is additional empty spaces between the water molecules leading to its lower mass per volume(density)
Answer:
Dehydration synthesis reactions build molecules up and generally require energy, while hydrolysis reactions break molecules down and generally release energy. Carbohydrates, proteins, and nucleic acids are built up and broken down via these types of reactions, although the monomers involved are different in each case.
Explanation:
First, consider the steps to heat the sample from 209 K to 367K.
1) Heating in liquid state from 209 K to 239.82 K
2) Vaporaizing at 239.82 K
3) Heating in gaseous state from 239.82 K to 367 K.
Second, calculate the amount of heat required for each step.
1) Liquid heating
Ammonia = NH3 => molar mass = 14.0 g/mol + 3*1g/mol = 17g/mol
=> number of moles = 12.62 g / 17 g/mol = 0.742 mol
Heat1 = #moles * heat capacity * ΔT
Heat1 = 0.742 mol * 80.8 J/mol*K * (239.82K - 209K) = 1,847.77 J
2) Vaporization
Heat2 = # moles * H vap
Heat2 = 0.742 mol * 23.33 kJ/mol = 17.31 kJ = 17310 J
3) Vapor heating
Heat3 = #moles * heat capacity * ΔT
Heat3 = 0.742 mol * 35.06 J / (mol*K) * (367K - 239.82K) = 3,308.53 J
Third, add up the heats for every steps:
Total heat = 1,847.77 J + 17,310 J + 3,308.53 J = 22,466.3 J
Fourth, divide the total heat by the heat rate:
Time = 22,466.3 J / (6000.0 J/min) = 3.7 min
Answer: 3.7 min